
Optimal Construction and
Coarse-Graining of Markov State

Models

Adam Kells
∫∫

A thesis presented for the degree of
Doctor of Philosophy

October 31, 2020

Department of Chemistry

Kings College London

United Kingdom



To my parents

1



Abstract

Markov state models (MSMs) are a widely used approach for creating interpretable

memoryless kinetic models from time series data. In this PhD thesis, we develop upon

the existing MSM theory and investigate how MSMs can be used to automate and

remove ambiguity in the analysis of kinetic systems. Firstly we consider using coarse-

graining to identify metastable and transition states from high-dimensional models.

We propose an eigenvalue-based variational optimization method for obtaining these

states based on a lagtime independent projection approach. We demonstrate that this

variational protocol is linked to the theory of mean first passage times to provide an

intuitive interpretation. We show that our kinetic clustering can be extended to more

general geometric networks, provided they are well described by a stochastic block

model. We illustrate the broad applicability of this method by deriving a parallel

tempering approach for accelerating the coarse-graining on models with large numbers

of nodes. Secondly, we derive an equation for estimating the relaxation time of a

Markovian system in the long lagtime limit by making some simple assumptions about

the functional dependence between the true high-dimensional Markovian dynamics

and the discrete approximation. We show that this equation can allow for accurate

relaxation times to be extraced from limited simulation data. Finally we demonstrate

how MSMs can be used in conjunction with umbrella sampling simulations to quickly,

conveniently and accurately calculate membrane permeabilities.
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“Beginnings are always troublesome”

George Eliot

“This model will be a simplification and an idealization,

and consequently a falsification. It is to be hoped that

the features retained for discussion are those of greatest

importance in the present state of knowledge.”

Alan Turing

1
Introduction

1.1 A Brief History of Markov models

1.1.1 From Markov to Zwanzig

In 1913, Andrei Markov published a paper concerned with the statistical analysis of

letters appearing in the text of a Russian novel [2, 3]. He was interested in vowels

and consonants, in particular how likely one was to follow the other. By analysing this

text, he was able to establish a central limit theorem (CLT) for non-independent events.

Prior to this the CLT had been used only to show that certain sums of independent

12



random variables would lead to normal distributions.

By extending the CLT to events which were conditioned on each other, Markov

instigated a fundamental shift in probability theory, away from viewing systems as ex-

periments of independent trials and towards a series of linked events where the outcome

of the next trial depends upon the current.

While Markov pursued this line of research purely for a generalization of the law of

large numbers, in the years that followed several researchers saw the usefulness of the

memoryless property in describing kinetic systems. Note for example that Brownian

motion [4], one of the most important fields of study at the beginning of the 20th century

is a Gaussian Markov process as the position at the next time step Xt+1 depends on

only the current position Xt (equation 1.1 where σ is the variance parameter and Bt

is a number drawn from a Gaussian distribution).

Xt+1 = Xt + σBt+1 (1.1)

This change of thinking to memoryless dynamics has proven to be ubiquitously

useful. In the Markov formalism, the past and future are independent and only the

present state of the system is needed to make quantitative predictions of the future. As

such, over the years this approach has been used to model systems with both discrete

and continuous state spaces, such as the stock market [5–8], animal migration patterns

[9,10] and famously internet search results with the Google PageRank algorithm [11,12].

Discrete state and time Markov systems (usually termed Markov chains) are par-

ticularly popular due to their human interpretability. These systems consist of some

discrete sets of states which the system can occupy with an associated matrix of tran-

sition probabilities to move between the states as shown for example in figure 1.1 (with

T denoting the transition probability).

What was less clear following Markovs original work was whether one could take a

system with continuous Markovian dynamics and describe it accurately by a system of

13



Figure 1.1: A simple example of a Markov model.

discrete states. The breakthrough came from the seminal work by Zwanzig in 1983 [13].

In this work, Zwanzig considered projecting a continuous space classical dynamics on

to some discrete states as shown in figure 1.2. He commented that a theory for the

movement of a dynamical system between regions of configuration space could be of

value in the context of studying the metastability of supercooled fluids.

To do this, he projected his continuous Markovian dynamics on to a discrete space,

introducing memory in to the system. By assuming a short memory approximation

he was able to achieve a discrete Markovian description of the system dynamics. This

assumption of the short memory approximation is non-trivial as it assumes that the

system quickly equilibrates within its current state. Acknowledging this Zwanzig con-

cluded that only if the discrete states to project on to were chosen ’sensibly’ and

the dynamics was ’sufficiently complex’ would the system then not retain memory of

reaching its current coarse-grained state, and one could obtain a ’remarkably simple’

expression for transition rates between the clustered system states.
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Figure 1.2: Visualisation of Zwanzigs discretization.

This result allowed the theory of Markov models to be applied to a much broader

range of problems than previously as now complex continuous dynamics could be ac-

curately modelled by a much simpler and intuitively appealing Markov model with a

discrete set of states.

1.1.2 From Zwanzig to the Markov State Model

Building upon the work of Zwanzig [13] (and other practioners/advocators of the master

equation methods for transition networks [14–18]), the late twentieth century saw a

marked increase in the application of these discrete memoryless models to provide

interpretative models of biophysical systems [19–22]1.

For many experimentalists, the challenges of modeling atomistic-level kinetics from

experiment led to molecular dynamics (MD) simulation being employed to capture dy-

namics. Consider for example ’The Protein Folding Problem’, the question of how a

protein transforms from its unfolded to folded state. While experimentally, identifying

the crystal structures of the initial and final state is possible, examining the mecha-

nism through which folding occurs is much more difficult [23]. MD allows for the full

resolution dynamics to be simulated and examined. However the difficulty of achieving

1These early master equation methods were not employed in the modelling of molecular simulation
data but in somewhat different contexts, such as chemical reaction rate theory or for Monte Carlo
simulations of polymer models of proteins.
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physically relevant timescales with sufficient statistical sampling from MD simulation

led to a huge surge of research in to improved hardware [24–30], software [31–34] and

data modeling.

In terms of data modeling, the vital breakthrough came with the realisation that

this theory first refined by Zwanzig was perfectly suited to the problem at hand. The

MD systems being studied were effectively random walkers through a continuous con-

figuration space and the end users wanted to have an easily interpretable discrete state

Markov model. Even more importantly, these memoryless master equations, called

Markov State Models (MSMs), allowed for the trajectories of multiple independent

simulations to be combined in a statistically optimal and rigorous manner to create

a single dynamic model where the conformations observed during the simulation each

belonged to one of the discrete states [35]2. In the following months and years, Markov

models became the primary means of extracting kinetic insight from simulations and

in particular for protein folding [36–42].

MSMs became popular within the community for three main reasons [43]:

• They made it much easier to conceptualize and understand the highly complex

kinetic processes observed in MD trajectories.

• The mathematical formalism allowed for a concrete connection to experimental

observables.

• They helped to accelerate MD simulations by suggesting configurations from

which to reinitialise trajectories.

In the following sections of this introductory chapter, the necessary background and

theory for the coming chapters is covered in depth. For further details on the state of

the art in MSM construction, see recent reviews [44,45]. In section 1.2 the mathematical

formulations of discrete Markov chains and master equations are introduced along with

2This initial application of memoryless master equations to the modeling of molecular simulation
coined the term Markov state modeling.

16



some illustrative examples. In section 1.3, the field of molecular dynamics is presented

since although the theory of MSMs is broadly applicable to a wide range of fields3

the primary application at the forefront of our minds will be for modeling atomistic

simulations. Section 1.4 covers the practical steps involved in building Markov models

from data and reviews the last twenty years of research in refining those steps. Finally

section 1.5 outlines the topics covered in the chapters of this thesis and aims to give

some context and motivation to the questions we will aim to answer.

1.2 Markov State Model Theory in a Nutshell

A Markov state model consists of two pieces of information; a discrete set of states

{x} = 1, ..., N which the system can occupy and either transition rates kij (i,j ∈ {x})

which describe the rate at which the system moves between the states within {x} or

transition probabilities Tij which describe the probability that the system moves from

one state to another4. The element kij denotes the rate of transition from state j to

state i (similarly for Tij)
5.

With this model in hand, a differential equation can be written down for the evo-

lution of the probability to occupy a particular state at a given time pj(t).

dpj(t)

dt
=
∑
i 6=j

[
kjipi(t)− kijpj(t)

]
(1.2)

Equation 1.2 is called a master equation. Intuitively, the change in the probability

to occupy state j will depend on the flow of probability in and out of the state. The

term
∑
i kjipi is the rate of transition from all states in to state j. Similarly,

∑
i kijpj

is the rate of transition from state j in to any other state.

3And we will in fact apply some of our later results to general geometric networks.
4The distinction between the transition rate and transition probability formulations is the difference

between continuous and discrete time. The transition rates are given in units of inverse time and so
are continuous. Meanwhile the transition probabilities are the likelihood to make a transition in a
discrete interval of time.

5It should be noted that this notation is not universal and many MSM practioners favour the
alternate notation (where kij denotes the rate of transition from i to j). This should be borne in mind
when accessing any documents referenced in this document.
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By defining a rate matrix [K]ij = kij and a probability vector P with elements pi

then the master equation can be written in a compact form as in equation 1.3. In this

formulation, the diagonal elements are given by kii = −
∑
j 6=i kji.

dP(t)

dt
= KP(t) (1.3)

This time-evolution equation has the following solution in terms of the initial prob-

ability vector.

P(τ) = eKτP(0) (1.4)

From equation 1.4, the quantity eKτ is the propagator which, given the probability

distribution at some time, can be used to compute the probability at a later time. By

writing out equation 1.4 in element wise form, it can be seen that the elements of the

propagator must be conditional probabilities.

pj(τ) =
∑
i

[eKτ ]jipi(0) (1.5)

pj(τ) =
∑
i

p(j, τ |i, 0)pi(0) (1.6)

1.5 is the element wise version of 1.4 while 1.6 is a basic result of probability theory.

p(j, τ |i, 0) is the conditional probability to be in state j at time τ given that the system

was in i at time 0. By connecting that equations 1.5 and 1.6 must both be true then

the elements of the propagator must be the conditional probabilities. This matrix

of propagators is defined to be the transition probability matrix T(τ) (with elements

Tij(τ) = p(j, τ |, i, 0)). The quantity τ is called the lagtime of the model, it is the

time-step in the discrete time transition probability formulation.

T(τ) = eKτ (1.7)
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In the Markovian framework, it is assumed that the conditional probabilities are

independent of the particular time. In other words, if one has a probability distribution

at a time t and wants to calculate the distribution some time τ later then the propagator

will depend only on the time-step τ and not on the time t.

p(j, t+ τ |i, t) = p(j, τ |i, 0) ∀t (1.8)

Further to this, if the system is Markovian then the model quality should not be

sensitive to the particular choice of lagtime τ . If a vector P(t) is propagated twice with

T(τ) then this should be equivalent to propagating once with T(2τ). This requirement

is known as the Chapman-Kolmogorow (CK) condition6.

T(nτ) = T(τ)n (1.9)

It should also be observed that the equation 1.7 does not establish a one-to-one

relationship between K and T due to the matrix exponential. Each K has (for a

particular value of τ) a unique corresponding T(τ). However, the inverse is not true.

There may be multiple distinct K which can give rise to identical T(τ). This is known

as the embedding problem7.

1.2.1 Spectral Decomposition

Once the rate matrix K or the transition probability matrix T(τ) has been obtained

the dynamical behaviour of the system can be studied by examining the eigenvalues

and eigenvectors (spectral decomposition). As the link between K and T(τ) has been

established in equation 1.7 the following discussion of the spectral decomposition of K

can be performed analogously for T(τ).

6The Chapman-Kolmogorow condition is a necessary but not sufficient condition for Markovianity.
It is typically used as a check to build evidence for the memoryless nature of the model but it does
not guarantee that the system is Markovian.

7This problem can be equivalently stated as follows. Given a matrix T(τ) satisfying the minimum
requirements of a transition probability matrix (elements all non-negative and rows summing to one)
then does there exist a matrix T(τ/2) such that T(τ/2)2 = T(τ)?
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Spectral decomposition refers to the unique description of a matrix by a set of

eigenvalues and linearly independent eigenvectors. The left and right eigenvectors

(ψL,ψR) of the rate matrix K are given by the vectors satisfying the eigenvalue (λn)

equations 1.10 and 1.11.

KψRn = λnψ
R
n (1.10)

ψLnK = λnψ
L
n (1.11)

For a rate matrix as defined previously (negative diagonal, non-negative off diagonal

and columns summing to one) there will be one zero eigenvalue with all the rest being

negative. To illustrate this, consider the following example rate matrix K in equation

1.12.

K =

−a b

a −b

 (1.12)

First consider that since all the rows sum to zero that [1, 1] must be a left eigenvector

of the matrix with eigenvalue λ1 = 0. Secondly the trace of the matrix is negative

(−a− b) so since the trace is the sum of the eigenvalues, the second eigenvalue of the

matrix must negative with λ2 = −a − b. As such the eigenvalues of the rate matrix

can be arranged in descending order to provide a natural ordering.

0 = λ1 ≥ λ2 ≥ ... ≥ λN (1.13)

The right eigenvector corresponding to the zero eigenvalue is of special interest as

this means the rate of change of the vector with respect to time is zero. This is the

stationary probability vector and it gives the equilibrium probabilities of the states of
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the system.

KP = 0 =⇒ dP

dt
= 0 =⇒ P = Peq (1.14)

The left and right eigenvectors can be related via the equilibrium probability.

ψLnPeq = ψRn (1.15)

The eigenvectors also satisfy some useful orthogonality relations laid out below in

equations 1.16 and 1.17. These show that we have orthogonality both for a sum over

elements and for a sum over the vectors.

N∑
i=1

ψLn (i)ψRn′(i) = δnn′ (1.16)

N∑
n=1

ψLn (i)ψRn (j) = δij (1.17)

If the eigenvalues/vectors have been obtained (and normalized to satisfy the or-

thogonality relations8) then each element of the rate matrix can be written as a linear

combination of these quantities as in equation 1.18. This way of representing rate

matrix elements will be particularly useful in our later analysis.

Kji =

N∑
n=1

λnψ
R
n (j)ψLn (i) (1.18)

1.2.2 Rate Matrix Dynamics and Relaxation Timescales

The eigenvalues and vectors of the rate matrix describe the dynamics of the Marko-

vian process. Each eigenvalue is linked to a relaxation timescale and the corresponding

eigenvector gives sets of states between which the relaxation process occurs. A relax-

8Note that, in practice, software to spectrally decompose a matrix does not automatically normalize
or make orthogonal the eigenvectors.
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ation timescale describes the speed at which the systems initial probability distribution

converges towards its equilibrium distribution.

The best way to see the link between eigenvalues and relaxation processes is to

derive the time dependent probabilities of a two state Markov system [46]. Consider a

two state system described by the rate matrix in equation 1.19.

K =

−k21 k12

k21 −k12

 (1.19)

The master equation for the probability of state 1 is as in equation 1.20

dp1(t)

dt
= −k21p1(t) + k12p2(t) (1.20)

Using the fact that p1(t) + p2(t) = 1 (and so p2(t) = 1 − p1(t)), equation 1.20 is

written as a single variable differential equation in 1.21 and this is solved for p1(t).

dp1(t)

dt
= (−k21 − k12)p1(t) + k12 (1.21)

p1(t) = Ce−(k12+k21)t +
k12

k12 + k21
(1.22)

C is a constant which can be fixed by observing that i) k12
k12+k21

= peq1 (from the first

right eigenvector of K) and ii) C must be such that the right hand side of the equation

is p1(0) at t = 0. Additionally, the eigenvalues of K are λ1 = 0 and λ2 = −k12 − k21.

p1(t) = (p1(0)− peq1 )e−|λ2|t + peq1 (1.23)

From this it becomes clear that as time evolves, the distribution of probability will

tend towards the equilibrium distribution with a timescale characterised by λ2.

τ rel2 =
1

|λ2|
(1.24)
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For systems of more states, there will be more timescales (each given by the inverse

of the magnitude of the eigenvalue). The corresponding eigenvectors will have positive

and negative values. Hence each timescale can be interpreted as the time with which

the rate matrix moves probability density between the oppositely signed regions of the

corresponding eigenvector.

As an example, the first three eigenvectors of a sample two state system are shown

in figure 1.3. The first eigenvector (blue circles) shows the equilibrium probabilities

with the probability focused in to two main regions of space. The second eigenvector

(orange circles) shows the regions of space between which it is slowest to move the

probability density. Similarly, the third eigenvector (green circles) shows the regions

of space between which the timescale is characterised by the third eigenvalue.

Figure 1.3: First three eigenfunctions of a sample system.
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Interlude: Link between Markov rate matrices and Quantum

Mechanics

As an aside for the reader who is more familiar with quantum mechanics, one can

notice the close connection between the mathematical formulation laid out so far and

that of quantum mechanics. Consider for example the Schrodinger equation for the

time-evolution of the wavefunction.

i~
dΨ

dt
= HΨ (1.25)

This is a time-evolution of a probability density (as opposed to a probability vector)

characterised by an operator H, equivalently the quantum mechanical propagator is

written as e−iHt/~. The similarity in the form of the two equations and associated

propagators is clear to see. The main difference between the two theories is that the

operator in quantum mechanics is required to be self-adjoint whereas in using Markov

matrices to describe diffusive processes we relax that condition [47].

1.3 Molecular Dynamics Simulations

It is clear how this new Markovian formalism proved useful as an approach for mod-

elling complex systems. In this section, one particular field of study, molecular dy-

namics (MD) simulations, is introduced as it will be the application at the forefront

of our minds for the chapters to come. Following this, the development and practical

application of MSMs to this MD field of study will be discussed.

1.3.1 Origin and Basics of Molecular Dynamics

Since the development of transistor based computers in the 1950s, researchers have used

these machines to simulate simplified models of systems. One of the first instances of
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a molecular based simulation was performed by Fermi, Pasta, Ulam and Tsingou9 [49].

In this work, the proposed idea was to model atoms in a crystal by simulating a 1-D

chain of molecules joined by springs obeying Hookes law plus a non-linear interaction

term. The simulation yielded surprising results which required the development of new

theoretical results (solitons) to explain. The study provided a proof of concept for the

role of computer simulations as a substitute for traditional experiment.

With the continued success of Moores law for computing [50], the power available

to academic researchers has grown exponentially over the intervening time and opened

up the possibility of simulating computational models of ever more complex systems.

The example of this which we examine in detail here is for atomistic systems. These

simulations were developed in the 1970s [51–53] and aim to understand the behaviour

of macromolecules by approximating atoms as hard spheres which exert forces on each

other by some classical interaction terms. These forces come in two forms, those which

describe forces between bonded atoms and those which describe non-bonded inter-

actions. The bonded potential energies come from fluctuations in the atomic bond

lengths, angles and dihedrals. The non-bonded terms come from the Van Der Waals

and electrostatic interactions. The accurate parameterisation of these potential terms

has been one of the most significant technical challenges in obtaining sufficiently accu-

rate simulations [54–57].

This comes with the essential caveat that a computer can never simulate reality,

it can only simulate the model of reality it is provided with. As such, any simulation

results will carry with them any flaws inherent to the models they are based upon.

For a more thorough discussion of the philosophy of simulation see the introductory

chapters of Frenkel and Smits ’Understanding Molecular Simulation’ [58].

Classical molecular simulations are based on Newtons second law (equation 1.26)

which relates the acceleration of an object with mass to the force applied. In contrast

9Mary Tsingou was not included as an author on this paper and receives only a brief acknowledge-
ment for the ’efficient coding of the problems and for running the computations on the Los Alamos
MANIAC machine’ [48].
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there exist also quantum molecular simulations which use Schrodingers equation to

describe the motion rather than Newtons equation. These are more accurate but also

significantly more computationally expensive and become prohibitively so for systems

with large numbers of atoms.

F = ma (1.26)

This implies that for a system of particles (indexed by i) with masses mi the accel-

eration ai which that particle experiences is proportional to the force experienced Fi.

As the force is the negative gradient of the potential energy vi and the acceleration is

the second derivative of position xi, equation 1.26 can be rewritten as equation 1.27.

d2xi
dt2

=
−1

mi

dvi
dx

(1.27)

So knowing the present positions of all the particles in the system as well as the

potential energy function experienced at each point in space then the differentials in

equation 1.27 can be approximated numerically using finite differences [59].

xi(t+ δt)− 2xi(t) + xi(t− δt)
(δt)2

=
−1

mi

vi(xi(t+ δt))− vi(xi(t))
xi(t+ δt)− xi(t)

(1.28)

δt represents the time step introduced by discretizing the system dynamics. Equa-

tion 1.28 is obtained by a method known as central differences, several alternate meth-

ods for approximating derivatives exist but the key idea is that this approach leads

to an update rule for calculating xi(t + δt) from the present positions xi(t), the past

positions xi(t− δt) and the potential energy vi.

Then for the accurate simulation of some physical system, one requires the initial

positions of all atoms in the system and a force field which describes all the forces of

interest experienced by the particles of the system. This force field parameterisation is a

notoriously difficult experimental/theoretical challenge. Even the calculation of forces

for something as a simple as a water molecule is the subject of significant debate [60,61].
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Despite the theoretical challenges regarding complex choices of parameters, MD

simulation has been hugely popular and successful as a tool to compliment traditional

experiment. It is typically integrated as part of an iterative pipeline where the results

of the experiment feed back in to the MD model. MD simulation has been used to bet-

ter understand protein folding mechanisms [23, 62, 63], protein-ligand un/binding free

energies [64–66], membrane-crossing [67–69] as well as many non-biological applications

such as carbon nanotubes [70].

MD simulations produce the positions of all atoms in the system at each discrete

time step. This atomistic level data then requires interpretation. There are a range of

visualisation tools which allow these trajectories to be viewed as a movie, with each

timestep representing a single frame. While this can be helpful for some insight (for

example, viewing the route a drug molecule takes to reach the pocket), it does not

immediately produce any quantitative measurement to compare to experiment.

It is here that Markov state modelling emerges as a solution, it allows all of the

observed kinetic behaviour to be converted in to a statistically optimal kinetic model

from which experimental observables can be computed. As an added benefit, if one

decides to run extra simulations then the new data can be easily added to the existing

data to create a single Markov model. This ability to combine independent trajectories

in to a single humanly interpretable model allows for the construction of an iterative

protocol where the Markov model itself feeds back to inform the new simulations to be

run.

The question then is given this high dimensional MD simulation time series data

how does one construct a MSM. We address this question next in section 1.4.
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1.4 Practical Guide to Constructing a Markov Mod-

els

In practical examples, one is interested in describing a real world system by a Markov

model given some time series data. There are typically five steps in constructing an

MSM [43].

1. Identify the microstates of the model and assign each observation in time to a

single microstate.

2. Choose the lagtime at which the MSM should be constructed via the CK test.

3. Calculate the transition probabilities between microstates.

4. Cluster together microstates to create coarse-grained macrostates.

5. Compute the transition rates on the coarse-grained state space to arrive at a

humanly interpretable kinetic network description of the system.

1.4.1 Defining Microstates

Each discrete time observation in the simulation needs to be assigned a discrete state

label in order to construct the model. At each instance in time, the state of the system

is described by the XYZ coordinates of every atom in the system. There are two main

approaches to assign states, using a reaction coordinate or a density based approach.

• Reaction coordinate: If a feature can be chosen so that the behaviour of interest

is well characterised by movement along this coordinate then each simulation

observation can be classified based on where it falls along this coordinate10. This

coordinate might be a particularly interesting bond or dihedral angle.

10The effective identification of reaction coordinates is an entire area of research unto itself, partic-
ularly in the context of machine learning. Common methods in the Markov modelling field include
PCA [71] (which finds directions of maximal variance) and TICA [72] (which identifies a maximally
slow subspace of input dimensions). An open challenge in the field is to how to characterize coordi-
nates which are biophysically relevant but have relatively fast dynamics [73]. This is also one of the
most important questions in the field of machine learning research.
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• Density based clustering: One can take some higher dimensional set of features

(or just the raw XYZ coordinates) and identify states by grouping together frames

which are closest together in this full configuration space.

Which of these two methods is preferential to use? This is not a straightforward

question to answer and depends greatly on the system being studied. For example,

while the reaction coordinate identification method greatly simplifies the interpreta-

tion of the system it also requires the assumption that the degrees of freedom which

have been ignored equilibrate much faster than the coordinate of interest. This may

be problematic for systems where the interesting process is not the slowest occuring.

Similarly, while the density based approach navigates around this issue by retaining a

full high-dimensional representation of the system for clustering, it also is less directly

interpretable.

As an illustration of these two approaches consider the case of a ligand-protein

binding simulation [74, 75]. In the reaction coordinate framework, one might identify

the 1D distance between the centre of mass of the ligand and the binding pocket as an

appropriate feature and classify frames by discretizing this coordinate. In contrast, in

the density based framework, one might identify states by taking the protein as fixed

and using the XYZ coordinates of the ligand in the frame of reference of the protein.

Then states can be identified by grouping frames with similar XYZ coordinates using

traditional pattern recognition clustering (k-means [76], k-nearest neighbours [77] etc.).

1.4.2 Estimating Transition Probabilities

If we assume that we have managed to identify each frame of our trajectory with a

discrete numeric label then the next step is to estimate the Markovian transition prob-

abilities. We want to know, given our observation what is the most likely value for the

transition probabilities to have? This is then a likelihood maximization problem. We

write down the likelihood of the observed trajectory given some transition probablities

and then optimize to find the transition probabilities which maximize the likelihood.
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In probability, the likelihood of observing multiple events is multiplicative so the like-

lihood of the entire trajectory is the product of the probability of each transition.

L = Tx(2)x(1)Tx(3)x(2)Tx(4)x(3)...Tx(N)x(N−1) (1.29)

This is equivalent to taking the probability of each possible transition raised to the

power of the number of times it was observed.

L =
∏
i,j

T
Cji
ji (1.30)

Here C is a count matrix where the element Cji contains the number of observed

transitions from state i to state j. It is usually easier to work with the log-likelihood

since it changes the product to a summation.

log(L) =
∑
i,j

Cji log(Tji) (1.31)

Since the only information we possess is the transition count matrix C, we want

to ask the question, given the observed transitions, what is the most likely underlying

probabilities Tji which gave rise to these observations? In other words, what values

of Tji maximise the likelihood of the trajectory L. We want to find the values of Tji

which maximise this, however we do not have complete freedom of choice11, we require

that the columns of our transition matrix sum to 1 (
∑
j Tji = 1). We add a Lagrange

multiplier condition to enforce this property, this condition is enforced by λi in equation

1.32.

log(L) =
∑
i,j

Cji log(Tji)−
∑
i

λi(
∑
j

Tji − 1) (1.32)

11If we just differentiate immediately without placing constraints on our search, we find that the
probabilities are infinite since this will obviously maximise the likelihood.
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Differentiating with respect to Tji in equation 1.32, one can obtain equation 1.33.

d log(L)

dTji
=
Cji
Tji
− λi = 0 (1.33)

Summing over j yields that λi =
∑
j Cji and so the maximum likelihood estimate

for the transition probability from i to j is given simply by the number of observed

transitions from i to j divided by the number of observations in i.

Tji =
Cji∑
j Cji

(1.34)

The transition count matrix C is in fact lagtime τ dependent, it requires us to make

a choice of how far in time we will consider two states to be separated to qualify as an

observed transition as shown in figure 1.4.

Figure 1.4: Visualisation of lagtimes.

This is where we use the CK test to decide what lagtime to use to construct the count

matrix C. We want that the transition probabilities are insensitive to the particular

choice of lagtime. The derivation of Zwanzig upon which the validity of this formalism

relies makes the assumption of the short-memory approximation and so that once the

system enters a state it ’quickly’ forgets which state it entered from. The term ’quickly’

is relative to what we have defined to be the timestep of our model. If our lagtime is

very short then the system will retain some memory of its previous state. Conversely, if

the lagtime is very long then the transition probability becomes not only independent
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of its history but also independent of the current state.

lim
τ→∞

p(j, τ |i, 0) = peqj (1.35)

As mentioned earlier, the CK test is necessary but not sufficient for ensuring Marko-

vianity. For true Markovianity, one requires that equation 1.9 is true for all n. In

practice this amounts to computing the quantities in equation 1.9 for a range of values

of τ and selecting a value such that the equation holds true (within some reasonable

tolerance) for several n.

1.4.3 Clustering Microstates

Once an MSM has been constructed we have a large system of nodes upon which

the true dynamics are well approximated by a Markovian description. We now want

to obtain a coarse-graining by aggregating these states to allow us to paint a simple

and intuitive painting of the systems kinetics. In this second round of coarsening

our description of the system will become less accurate as information is removed.

This ultimately means that one finishes with two Markov models which serve different

purposes, i) a high-dimensional MSM which describes the true dynamics as accurately

as possible and can be used for computing experimental observables and ii) a low-

dimensional MSM which provides a clear understanding of the system and can be used

for enhanced sampling protocols.

To achieve this, the microstates from the initial MSM are grouped12 in to physically

interpretable macrostates and the new rates between them calculated (as in figure 1.5).

It is this step which will be the main subject of investigation in this thesis. As such we

will present a more comprehensive review of clustering methods in chapter 2.

12The terms coarse-graining, clustering and dimensionality reduction can all be used to describe the
grouping together of states in a MSM to produce a new MSM with fewer states.
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Figure 1.5: Visualisation of microstate clustering.

1.5 Thesis Outline

For the remainder of the thesis, we will assume that we have a Markov state model

which has been constructed by some selection (or variation thereon) of the methods

described previously. We will typically further assume the existence of a rate matrix

which accurately describes the kinetics of the system of interest as this will uniquely

define an associated transition probability matrix.

The primary thrust of this thesis from this point on will be to examine how MSM

theory can automate and simplify the extraction of useful insight from time series data

without comprising accuracy. The central objective will be to remove the ambiguity

which exists at present in several areas of MSM usage and can be troublesome for

novice users.

In Chapters 2, 3 and 4 we will present the primary work of the thesis which concerns

a protocol for optimally and automatically identifying key states via coarse-graining

of MSMs. In chapter 2, we describe our proposed algorithm to use the relaxation

timescales as variational parameters and show how these can be used to identify both

metastable and transition states in some simple test cases. In chapter 3, we delve

deeper in to the theory and provide some analytic explanation and justification for

the effectiveness by interpreting the relaxation times in terms of mean first passage

times. The method developed, while effective, scales poorly for systems with high-

33



dimensionality (large numbers of microstates, clusters or reaction coordinates). Hence

in chapter 4, we describe a parallel tempering based approach for extending the method

to these high-dimensional systems as well as demonstrating how it might be applied

to clustering of nodes in geometric graphs. In Chapter 5 we derive a new equation

for effectively estimating relaxation times from MSMs in the long-lagtime limit. We

further demonstrate how this equation can be used to accurately obtain relaxation times

from systems with limited data. In Chapter 6 we examine a new MSM approach to

calculating membrane permeabilities from MD simulations. This new analysis method

achieves equivalently accurate results to existing methods while being significantly

simpler to implement. Finally in chapter 7, we reexamine the broader state of the field

and the main outstanding questions to be addressed in the future.
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“The most important possible thing you can do is do a

lot of work.”

Ira Glass

2
Variational Coarse-Graining Of Markovian

Dynamics

2.1 Introduction

With the studying of complex systems using Markov models comes the need to extract

meaningful and actionable insight in to the system. One barrier to understanding is

the typically high dimensionality of these models. For this reason, there is a need

for robust and interpretable lower dimensional representations of these systems by ag-
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gregation of the microstates in to clusters (macrostates). Typically, in computational

applications, one constructs a Markov model with a large number of states and per-

forms a dimensionality reduction to construct a new model with a much smaller set of

clustered states1 [63, 78].

This dimensionality reduction will inevitably come with the loss of information.

This will depend both on the composition and the definition of the kinetics of the

clusters. There are two types of clusters which we are interested in identifying.

• Metastable Clusters: Groups of microstates that move very quickly amongst

themselves but are slow to move to other macrostates.

• Transition States: Groups of microstates that are occupied only very briefly but

are important in linking together the major metastable clusters2.

Our goal is to be able to identify these types of states in an optimized and automatic

manner. The automatic aspect of this is neccessary as at present most dimensionality

reduction procedures require a significant degree of human input. In this chapter

we propose an algorithmic protocol to perform clustering which will require human

input only in the definition and construction of the initial high-dimensional model.

This algorithm may have a wide range of major benefits for the field. It can be used

to automate the production of intuitive and humanly understandable descriptions of

kinetic pathways and mechanisms.

Additionally, the automatic ability to identify simulation frames as belonging to

transition states could help to accelerate MD simulations. By reinitialising trajectories

from these transition state frames, one can adopt a ’shooting from the top’ approach

[79,80] to improve the sampling of configuration space.

1The definition of what constitutes ’large’ will be very system dependent. In most practical appli-
cations, a system with over 1000 microstates is considered large.

2In transition state theory, the transition state is described by a dividing surface with no volume.
In practice, we want to be able to assign some observations from our simulation as being transition
state configurations. This necessitates having a transition state of finite volume.
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2.1.1 Definitions of Clusters

Previously we provided a qualitative definition of the difference between metastable

and transition state clusters. Here we now establish the quantitative definition which

we will use to inform the rest of the work in this thesis. We define a transition state

Xn along the pathway described by the relaxation time τn as a state such that for a

MSM constructed at lagtime τn, there exist two (or more) states that the state has a

higher probability of transitioning to than remaining in its current state3.

Phrased more formally, it is a state Xn such that there exists distinct i and j

where MjXn(τn) > MXnXn(τn) and MiXn(τn) > MXnXn(τn). So on the timescale of

the pathway being described the state is unlikely to stay in its current state. With

this working definition of a transition state, we will over the course of the next three

chapters outline the results of our investigation to develop an automatic approach for

identifying these states.

2.2 Existing Coarse-Graining Methods

Before we attempt to develop our own method, we first give an overview of the existing

coarse-graining methods within the MD simulation community.

2.2.1 Perron Cluster Analysis

One of the earliest developed methods for performing this reduction came from a num-

ber of researchers at the Zuse Institute Berlin. In a pair of papers at the turn of the

millennium, Peter Deuflhard and colleagues proposed a method for identifying ’invari-

ant aggregates using the sign structure of the eigenvectors corresponding to the Perron

cluster of eigenvalues’ [81, 82], termed Perron Cluster Analysis (or PCCA4 for short).

3This is likely an overly generous definition of a transition state which could be refined further. The
logic is that a metastable state will not satisfy this condition. However we would expect a transition
state to satisfy this condition for a lagtime much less than the relaxation time. In practice, in this
thesis all the transition states identified satisfy this condition very comfortably.

4The additional C in the initialism exists to avoid confusion with the Principal Components Analysis
(PCA) algorithm.
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The ’Perron cluster’ consists of the set of eigenvalues which are close to 1 in value

(those corresponding to the slow processes between metastable clusters).

Figure 2.1: Illustration of PCCA clustering in to two metastable states.

By finding a spectral gap, one could identify the number of metastable states within

the system. If for example, the gap was between λ2 and λ3 then one could say that

there were two metastable states since there was one slow process (described by λ2) as

illustrated in figure 2.1.

Moreover, from this spectral gap one can then inspect the eigenvector corresponding

to the slow processes and identify the appropriate clustering based on the signs of the

elements. All microstates corresponding to negative elements are placed in to one

cluster and all the positive elements in to the other as in figure 2.1. For more than two

clusters, one essentially takes the relevant eigenvectors (corresponding to Perron cluster

eigenvalues) and performs a density/sign based clustering of states in this eigenvector

space. This approach has the clear drawback that it throws out all information related

to the magnitude of the eigenvector components and as such elements near the zero

values are liable to be misclassified [83].

A series of papers from this research group by Marcus Weber, Susanna Kube and

others further refined PCCA to develop PCCA+ and demonstrated its success at iden-

tifying stable conformations from simulation data [84–91]. PCCA+ is a more sophis-

ticated approach which accounts for eigenvector elements magnitudes and provides a
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fuzzy clustering (as opposed to the crisp clustering of PCCA). In PCCA+, each mi-

crostate has a probability of membership for each macrostate as shown in figure 2.2

where the blue line represents the probability of a microstate belonging to cluster A

and similarly for the red line and cluster B.

Figure 2.2: Illustration of PCCA+ clustering in to two metastable states.

2.2.2 Other Methods

More recent methods include the hierarchical Nystrom method which applies a scheme

of hierarchical clustering to try and deal with the effect of poorly sampled states [92].

Poorly sampled states can appear to be kinetically distinct when building MSMs as

due to the rarity of transition the transition rate connecting them is very slow. The

Nystrom method uses a hierarchical approach by assigning poorly sampled states to

the cluster to which they have the highest probability of transition.

Other early approaches used the concept of likelihood maximization for model di-

mensionality reduction [93,94] and similarly to the PCCA and Nystrom methods, these

approaches have proven effective at identifying metastable states. The Bayesian ag-
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glomerative clustering engine (BACE) approach uses an information theory approach

to minimize the information lost by the clustering and to explicitly quantify the er-

ror and uncertainty introduced by the clustering [95]. Others have tried to leverage

conventional machine learning approaches such as Ward clustering [96].

When surveying the existing methods to identify clusters of states two common

themes emerge.

1. These methods focus on using eigenvectors to identify metastable regions. Eigen-

values are used primarily to inform the number of metastable regions in the MSM

via the spectral gap. This can be problematic for systems which do not display

a clear separation of timescales.

2. Some methods are developed to deal with transition states via fuzzy clustering but

not to explicitly identify them as distinct regions of space in the low-dimensional

representation.

2.3 A New Approach to Coarse-Graining

In this chapter, a new approach is described which is inspired by these two observations

and uses the eigenvalues explicitly to automatically identify both metastable and tran-

sition states. The proposed method searches through potential clusterings and for each

calculates the MSM on the clustered space. The dominant timescales in the reduced

MSM are then used as a variational parameter to quantitatively score the quality of

the clustering. The process of describing and justifying this method requires three

important questions to be answered.

1. Given a Markovian system and a particular clustering of states, how does one

construct a reduced MSM so as to optimally preserve the original dynamics?

2. Given such a method to compute the reduced MSM, do the MSM timescales

behave variationally with respect to the clustering?
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3. Does such a protocol manage to identify both metastable and transition states?

In this chapter we will address these three questions and demonstrate the results

obtained from applying this protocol to some simple test systems. Before we do this

we need to introduce some additional theory, namely that of correlation functions.

2.4 Correlation Functions

A correlation function describes how variables co-vary over time. So if we observe a

change in a particular variable at time t, what change do we expect in some other

variable at a later time t+ τ?

Formally, the correlation function between two observables f and g at lagtime τ is

obtained by examining a dynamical average.

c(τ) = 〈f(x(τ))g(x(0))〉 (2.1)

x(τ) is the position of the system at time τ . This expectation value is calculated

not just with times 0 and τ but with a dynamical average over all times.

〈g(x(τ))f(x(0))〉 = lim
T→∞

1

T

∫ T

0

g(x(t+ τ))f(x(t))dt (2.2)

Then from the ergodic hypothesis [97], a long time average is equivalent to an

ensemble average so that we can write the correlation function as a sum over all mi-

crostates.

lim
T→∞

1

T

∫ T

0

g(x(t+ τ))f(x(t))dt =
∑
i,j

g(j)f(i)p(j, τ |i, 0)peqi (2.3)

This gives the correlation between two observables measured at a time separation

τ , and it satisfies, in equilibrium, the fluctuation-dissipation relation [98,99].

In many studies of dynamical systems, correlation functions of the occupancy num-

ber observable are useful for gaining kinetic insight in to the system [46,100–103]. The
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occupancy-number observable θi(t) is defined to be 1 if the system is in state i at time

t and 0 otherwise. As such it signals the state i ∈ [1, 2 . . . , n] in which the system

is found at any given time, where x(t) denotes a discrete reaction coordinate5 that

describes the system.

θi(t) =


1 x(t) = i

0 otherwise

(2.4)

This choice of variable acts like a delta function to pick out certain terms from the

sum in the ensemble average. It also has the property that its average value is the

equilibrium probability of the state.

〈θi(t)〉 = peqi (2.5)

As a result the correlation function is now comprised of probabilities and propaga-

tors. Additionally, it is common to extract the long lagtime limit from the correlation

function to obtain the connected correlator C̄.

C̄ij(τ) = p(i, τ |j, 0)peqj − p
eq
i p

eq
j . (2.6)

We can write equation 2.6 in matrix notation as equation 2.7.

C̄(τ) = [eKτ ]Dn −DnDT
n (2.7)

Where Dn is the diagonal matrix with peq along its diagonal, i.e. with entries (Dn)ij =

peqi δij . It can be more convenient to work with this quantity after Laplace transforma-

tion, when it is written as ˆ̄C as in equation 2.8.

ˆ̄C(s) = (sIn −K)−1Dn −
1

s
DnDT

n (2.8)

5Or a continuous coordinate which has been discretised via a binning procedure.
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(sIn −K)−1 is the propagator in Laplace space.

Interlude: Detailed Balance

In the coming derivation, we will make the requirement that our projected system

satisfies detailed balance [104]. Detailed balance is effectively the condition of ther-

modynamic equilibrium. This is equivalent to the statement that the probability of

observing a transition from i to j is equal to the probability for the reverse transition

from j to i. This can be phrased formally in equation 2.9.

p(j, τ |i, 0)peqi = p(i, τ |j, 0)peqj (2.9)

2.5 Low-dimensional Dynamics

Armed with the knowledge of correlation functions and their importance in statistical

physics, the question can now be asked as to how to optimally project high dimensional

dynamics on to a lower dimensional space. In this section, we show how projecting high-

dimensional dynamics on to a lower dimensional space and enforcing detailed balance

reproduces a physically interpretable criterion in terms of correlation functions.

Suppose that a projection operator P is used to project microstates down on to

some sub-space. The projected probability vector is denoted u=Pp and v =p−u its

orthogonal projection v=Qp, withQ=In−P and In the n-dimensional identity matrix.

applying these projection the original definition of the master equation (equation 1.4)

a pair of coupled differential equations for the projections of p can be obtained:

du

dt
= PKu + PKv (2.10)

dv

dt
= QKu +QKv (2.11)
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Solving the equation for v, with initial condition v(0) = 0, and substituting into the

equation for u leads to a dynamical description involving only u

du

dt
=

∫ t

0

M(t− τ)u(τ)dτ, (2.12)

which is no longer Markovian, where

M(t− τ) = PKδ(t− τ) + PKeQK(t−τ)QK (2.13)

is a memory kernel encoding the effective interaction between u and its past values,

arising from interactions with the degrees of freedom that have been integrated out.

Suppose the objective is to cluster the microstates i ∈ {1, . . . , n} into N < n

macrostates, that are labeled with capital indices I, J ∈ {1, . . . , N} then one can define

P the probabilities on the macrostates, which are related to p via P = ATp, where

A is an n ×N aggregation matrix with entries AiI equal to 1 if microstate i ∈ I and

zero otherwise. The macrostates probabilities also evolve according to a memory kernel

equation.

dP

dt
=

∫ t

0

R(t− τ)P(τ)dτ (2.14)

By Laplace transforming equation 2.14 and rearranging yields the propagator (sIN −

R̂(s))−1 in Laplace space in equation 2.15.

P̂(s) = (sIN − R̂(s))−1P(0) (2.15)

This Laplace transformed propagator can be used to express the correlator of the

coarse-grained system as in equation 2.16.

ˆ̄CCG(s) = (sIN − R̂(s))−1DN −
1

s
DNDT

N . (2.16)

Here DN is the diagonal matrix with the stationary solution of Eq. 2.14 Peq on the
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diagonal.

Two key questions are which projection corresponds to the clustering protocol A

and how the rate matrix of the coarse-grained system R̂(s) is related to that of the

original system K. Defining the relation between u and P to be described by an n×N

matrix H such that u = HP, one has from u = Pp and P = ATp that P = HAT .

The condition that P2 = P (necessary for a projection operator6) yields ATH = IN .

Using this relation and combining Eq. 2.15 with the Laplace transform of equation

2.12 (2.17) gives R̂(s) = ATM̂(s)H.

sû(s)− u(0) = M̂(s)u(s) (2.17)

Laplace transforming 2.13, we obtain equation 2.18

R̂(s) = sATK(sIn −K + HATK)−1H (2.18)

H must be chosen to ensure that the stationary solution of 2.14 is Peq = ATpeq. This

choice is not unique, however a sufficient condition is that Peq satisfies detailed balance

with R̂(s) for all s, i.e.

R̂(s)DN = DNR̂T (s)

The choice of equation 2.19 fulfils this requirement for all s.

H = DnAD−1N (2.19)

This can be easily checked for the limit s→∞, where 2.18 evaluates to equation 2.20.

R̂(∞) = ATKH (2.20)

6Projecting a system with the same projector a second time should not change the system.
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Substituting equation 2.19 gives equation 2.21.

R̂(∞)DN = ATKDnA. (2.21)

This is equal to DNR̂T (∞) as long as the rate matrix of the original system K satisfies

detailed balance with peq, i.e. KDn = DnKT . From now on we will restrict ourselves

to choice 2.19, which preserves the detailed balance condition assumed in the original

system, thus making the coarse-grained dynamics equilibrium. For the choice 2.19, we

obtain that our projection operator must be as in equation 2.22.

P = DnAD−1N AT (2.22)

And also ui(t) = [peqi PI(t)]/P
eq
I ∀ i ∈ I so that the elements of u tend to the same

limit as the elements of p. Substituted into equation 2.18, this choice for H gives the

clustering relation first obtained in [105].

R̂(s) = sATK(sIn −K + DnAD−1N ATK)−1DnAD−1N (2.23)

This result is remarkable as it shows how to construct the rate matrix of a low-

dimensional dynamics purely in terms of the rate matrix K of the original high-

dimensional dynamics and a choice of clustering A. To obtain a physically intuitive

interpretation of this result, equation 2.23 is rearranged to be of the same form as the

Laplace transform of a correlation function, as in equation 2.8. This expression can be

simplified down using the Woodbury inversion formula (equation 2.24) and identifying

M = (sIn −K), U = DnAD−1N and V = ATK..

(M + UV)−1 = M−1 −M−1U(In + VM−1U)VM−1 (2.24)

In simplifying down it is useful to notice that VM−1U = sATM−1U−In. Using these

relations, it is straightforward to obtain the simpler version of equation 2.23 given in
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2.25.

R̂(s) = sIn − (AT (sIn −K)−1DnAD−1N )−1 (2.25)

This can be rearranged in to the form of equation 2.26.

AT (sIn −K)−1DnA = (sIN − R̂(s))−1DN (2.26)

Since s−1ATDnDT
nA = s−1DNDT

N can be subtracted from both sides, we can recog-

nise the Laplace transformed correlation function using equation 2.16.

AT

(
(sIn −K)−1Dn −

1

s
DnDT

n

)
A = ˆ̄CCG(s) (2.27)

Using equation 2.8, leads to our final result of 2.28 showing that the condition which

arises naturally from attempting to reproduce the high dimensional kinetics on a low

dimensional space is to equate Laplace transformed correlation functions.

∑
i∈I

∑
j∈J

∫ ∞
0

C̄ij(t)e
−stdt =

∫ ∞
0

C̄CGIJ (t)e−stdt, (2.28)

2.5.1 Markovian Low-dimensional Dynamics

In the previous section the correlation element protocol arose naturally out of enforcing

a projected dynamics to preserve detailed balance. To arrive to a Markovian system

that preserves some properties of the correlation functions of the original system re-

quires a choice of the Laplace parameter s. It can be seen from equation 2.28 that

the choice of s effectively dictates which times contribute the most on each side of

the equation. Taking a particular value for s will have the effect of using correlation

functions at all times in the sum but providing a heavier weight to some than others.

Generally however, the Laplace parameter s is a complex number such that s = a+ ib

with a and b being real numbers. The various choices of s are summarised below.

• s = 0: Equally weight correlations at all times. Makes total area under correlation
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functions equal.

• s→∞: Equate correlation functions at t = 0.

• s > 0: Exponentially decreasing weight for correlation functions with increasing

time. Bigger s will more heavily weight towards early correlation functions.

• s < 0: Exponentially increasing weight for correlation functions with increasing

time. Biased towards ensuring correlation functions are equal at long times.

• s ∈ C: This choice is possible but less physically intuitive. It may be applicable

for systems with variables which periodically correlate and decorrelate.

Of these options, there are two choices of particular physical interest, s → 0

(Hummer-Szabo [105]) and s→∞ (Local Equilibrium).

In the case where s goes to 0, we obtain the Hummer-Szabo definition which ensures

that the area under the correlation functions over all time is equal:

∑
i∈I

∑
j∈J

∫ ∞
0

C̄ij(t)dt =

∫ ∞
0

C̄CGIJ (t)dt. (2.29)

At the other end of the spectrum, one can obtain the Local Equilibrium condition

by taking the limit of s tending to infinity. In this limit e−st becomes a delta function

δ0t such that only the initial correlation functions are equated.

∑
i∈I

∑
j∈J

C̄ij(0) = C̄CGIJ (0) (2.30)

In the following sections we will focus on these two definitions. We are less interested

in the cases above which focus on equating the long time correlation functions (s < 0)

because all of these methods will guarantee that the long time correlation functions

will be equal. This is because we made the strict requirement in the previous section

that the equilibrium populations in the high and low-dimensional representations must

be equal.
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On the other hand, we can suggest similar conditions which do not naturally arise

from the previous protocol but may still be useful. For example the typical case of

MSM construction which equates at some chosen time (the lagtime τ) the correlation

functions is not covered under any of these conditions.

To cover this we can first define a more general condition with the time integral

of the correlation functions to be equal between two selected times, τ1 and τ2, for the

coarse-grained and full dimensional dynamics:

∑
i∈I

∑
j∈J

∫ τ2

τ1

C̄ij(t)dt =

∫ τ2

τ1

C̄CGIJ (t)dt. (2.31)

Then as a special case, we can select a specific time τ1 = τ and set τ2 = τ + ε,

where the limit ε→ 0 is taken, for which the typical MSM condition returns:

∑
i∈I

∑
j∈J

C̄ij(τ) = C̄CGIJ (τ) (2.32)

2.6 Relaxation Times as a Variational Parameters

In the previous section we addressed our first question by examining a variety of pro-

tocols that can be used for defining the kinetics on a low-dimensional system given

a high-dimensional propagator. The second question we are interested in answering

is whether the relaxation timescales can be used as variational parameters to assess

the quality of the clustering. Ideally one would like to show that every eigenvalue is

variational under the clustering projection. This is analytically challenging to show in

general so we instead provide quantitative results for the variational nature of i) the

second (first non-zero) eigenvalue and ii) the sum over all eigenvalues to show that they

are valid variational parameters. After showing these two analytically, we will assume

that each individual eigenvalue is variational7.

It is reasonable to expect that a good coarse-graining will satisfy a variational

7While we do not explicitly prove this more the general case, it is empirically observed to be true.
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principle in its preserved timescales. A coarse-graining has the effect of smoothing out

and removing any timescales/free energy barriers associated with intrastate dynamics

and as such the observed barrier crossing should be made faster rather than slower8.

Firstly we demonstrate that the rate matrix obtained from the coarse-graining

is variational in its second eigenvalue in both the HS and LE conditions described

previously. The proof offered is an intuitive, element-wise approach.

2.6.1 Hummer-Szabo τ2 Variational Principle

The Hummer-Szabo condition is given by

∑
i∈I

∑
j∈J

∫ ∞
0

C̄ij(τ)dτ =

∫ ∞
0

C̄CGIJ (τ)dτ (2.33)

The correlation functions here can be replaced by the explicit expression in terms

of the propagator.

∑
i∈I

∑
j∈J

∫ ∞
0

([eKτ ]ijp
eq
j − p

eq
i p

eq
j )dt =

∫ ∞
0

([eRτ ]IJP
eq
J − P

eq
I P eqJ )dt. (2.34)

Performing a spectral decomposition of the Hummer Szabo condition and using

µn and ΦR
n to denote the nth eigenvalue and eigenvector respectively in the reduced

system and using λn and ψRn to denote the nth eigenvalue and eigenvector respectively

in the full system to obtain equation 2.35.

∫ ∞
0

N∑
n′=2

eµn′ tΦRn′(I)ΦRn′(J)dt =

∑
i∈I

∑
j∈J

∫ ∞
0

n∑
n′=2

eλn′ tψRn′(i)ψ
R
n′(j)dt. (2.35)

8Imagine a cyclist pedaling uphill on a smooth road vs on a mountain path. Removing the effect
of friction will make the uphill crossing faster.
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Next, we can explicitly perform the time integrals on both sides of the equation.

N∑
n′=2

−1

µn′
ΦRn′(I)ΦRn′(J) =

∑
i∈I

∑
j∈J

n∑
n′=2

−1

λn′
ψRn′(i)ψ

R
n′(j). (2.36)

Multiplying both sides by ΦL2 (I)ΦL2 (J) and summing over all macrostates I and J

the second eigenvalue can be isolated due to the orthogonality of eigenvectors.

−1

µ2
=
∑
I,J

∑
i∈I

∑
j∈J

n∑
n′=2

−1

λn′
ψRn′(i)ψ

R
n′(j)Φ

L
2 (I)ΦL2 (J). (2.37)

Since I and J (and by extension i and j) are indices that run over the same values

we can simplify down by grouping terms together to obtain equation 2.38 with the

definition an′ = (
∑
I

∑
i∈I ψ

R
n′(i)Φ

L
2 (I))2.

−1

µ2
=

n∑
n′=2

−1

λn′
(
∑
I

∑
i∈I

ψRn′(i)Φ
L
2 (I))2 =

n∑
n′=2

−1

λn′
an′ (2.38)

From the orthogonality and normalization of the eigenvectors, it can be shown that∑n
n′=2 an′ = 1, giving 2.39.

−1

µ2
≤ −1

λ2

n∑
n′=2

an′ =
−1

λ2
(2.39)

Since the negative inverse of the eigenvalue is the relaxation time, the slowest re-

laxation time of the dimensionally reduced matrix R obtained via HS is always less

than or equal that of the original system K.

τR2 ≤ τK2 (2.40)

2.6.2 Local Equilibrium τ2 Variational Principle

Next the slowest relaxation time variational principle is proven for the local equilibrium

condition. The local equilibrium condition corresponds to enforcing that the number
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of transitions occurring at equilibrium is exact at short times.

∑
i∈I

∑
j∈J

C̄(τ)ij = C̄(τ)IJ (2.41)

In the case where τ is much smaller than the slowest timescale of the rate matrix9,

then equation 2.41 can be simplified to equation 2.42.

RIJPJ =
∑
i∈I

∑
j∈J

Kijpj . (2.42)

From here we can proceed analogously to the proof for Hummer-Szabo and both

sides of the equation can be spectrally decomposed.

N∑
n′=2

µn′Φ
R
n′(I)ΦRn′(J) =

∑
i∈I

∑
j∈J

n∑
n′=2

λn′ψ
R
n′(i)ψ

R
n′(j) (2.43)

Multiplying both sides by ΦL
2 (I)ΦL

2 (J) and summing over all macrostates I and J ,

the second eigenvalue can be isolated.

µ2 =
∑
I,J

∑
i∈I

∑
j∈J

n∑
n′=2

λn′ψ
R
n′(i)ψ

R
n′(j)Φ

L
2 (I)ΦL2 (J) (2.44)

Exactly as before, it follows that µ2 < λ2 and so (since the eigenvalues are both

negative) it follows that −1µ2
< −1

λ2
. Hence the local equilibrium condition satisfies the

variational principle for its second eigenvalue.

τR2 ≤ τK2 (2.45)

2.6.3 Interlude: Kemeny Constant

In this next section we want to consider the sum over all relaxation times as a vari-

ational parameter. This seems a reasonable parameter to consider since this would

9To make the step from correlation matrix to rate matrix we need τ to be small enough that it
becomes reasonable to approximate eKτ by Taylor expanding to first order as I + Kτ .
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involve aiming to preserve all of the timescales present in the coarse-grained projec-

tion. However before we examine this, we make a slight diversion since the sum of

all relaxation times has some interesting properties relating to correlation functions

and mean first passage times. This summation of all timescales in a Markov chain is

known as the Kemeny constant, ζ. It was first described by Kemeny and Snell in their

textbook Finite Markov Chains [106].

ζ =
∑
j

t′jip
eq
j =

N∑
n=2

τn (2.46)

Here t′ji is the mean first passage time from state i to state j. This is called the

Kemeny constant due to its lack of dependence on the starting state index i.

To obtain the above result of the Kemeny constant, we begin by considering how

to write the continuous-time mean first passage time between a pair of states i and j

in a Markov system described by a rate matrix K. The transition probability can be

written as eKτ . We will take a timestep unit of τ and consider the limit to zero at the

end.

tji = [eKτ ]jiτ +
∑
k 6=j

[eKτ ]ki(tjk + τ) = τ +
∑
k 6=j

[eKτ ]kitjk (2.47)

We can rewrite equation 2.47 in a more convenient form as in equation 2.48 (defining

t′ji =
tji
τ and the Kronecker delta δki).

∑
k

(δki − [eKτ ]ki)t
′
jk = 1− [eKτ ]jit

′
jj (2.48)

This leads to the more convenient matrix form of equation 2.49 where we have

defined t′
T
j = (t′j1, . . . , t

′
jN ) as the row vector with the MFPTs to j as components.

t
′

j(I− [eKτ ]) = (1− [eKτ ]j1t
′

jj , ..., 1− [eKτ ]jN t
′

jj) (2.49)
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We can then write the mean first passage time as a linear combination of the left

eigenvectors of T 10. Using t′j
T

=
∑
` aj`φ

(`), substituting in to equation 2.49 and

considering component r produces equation 2.50 (where we have used that λ` is the

eigenvalue associated with the left eigenvector φ
(`)
r ).

∑
`

aj`(1− eλ`τ )φ(`)r = 1− [eKτ ]jrt
′
jj (2.50)

By multiplying by φ
(s)
r , the r-th component of the s-th right eigenvector of T and

summing over r, the orthonormality (and normalization) of the eigenvectors allows us

to obtain the mean first passage times in terms of the eigenvalues and vectors of the

transition matrix (and a set of constants aj` which remain to be determined).

∑
`>1

aj`(1− eλ`τ )δ`s = δs1 − eλsτψ(s)
j t′jj (2.51)

Taking s = 1, one finds that in the discrete time formalism for mean first passage

times, the diagonal elements (or recurrence time) t′jj are given by the inverse of the

equilibrium probablities [107].

t′jj =
1

peqj
(2.52)

Inserting this in to equation 2.51 provides an expression for the a values in terms

of just the eigenvalues/vectors.

ajs = − 1

peqj

eλsτ

1− eλsτ
ψ
(s)
j (2.53)

10This assumes that T has a complete set of orthonormal vectors which is only guaranteed if T
satisfies detailed balance.
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By substituting this back in to the expression for the mean first passage time in

terms of the basis vectors, one can obtain equation 2.54.

t′jk = aj1 −
1

peqj

∑
`>1

eλ`τ

1− eλ`τ
ψ
(`)
j φ

(`)
k (2.54)

The aj1 term can be identified by setting j = k and finally we can arrive at equation

2.55 for the MFPT in terms of the eigenvalues and eigenvectors.

t′ji =
1

peqj

[
τ +

∑
`>1

eλ`τ

1− eλ`τ
ψ
(`)
j (φ

(`)
j − φ

(`)
i )

]
(2.55)

Taking the limit of τ to zero simplifies equation 2.55.

t′ji =
1

peqj

[∑
`>1

1

λ`
ψ
(`)
j (φ

(`)
j − φ

(`)
i )

]
(2.56)

And so the tjj element is zero since in continuous time there is no time in which to

leave and return to the state,

tjj = 0 (2.57)

We now have an equation for the mean first passage time in terms of the eigenvalues

and eigenvectors of the Markovian rate matrix. Now we can observe that if we multiply

equation 2.56 on both sides by peqj and sum over all j that from the orthogonality of

eigenvectors we arrive at equation 2.58.

∑
j

t′jip
eq
j =

∑
l>1

τl (2.58)

Interestingly we have an index i on the left hand side which does not appear on the

right, so this expression is independent of the particular choice of i. It is for this index

independence that the sum of timescales is called the Kemeny constant. Following the
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original derivation by Kemeny, this quantity has generated a huge amount of academic

interest in attempts to offer an interpretation for the invariance under the choice of

starting state [108–111].

Next we offer a physical interpretation of Kemeny constant in terms of correlation

functions. A similar interpretation was proposed by Bini [110] in terms of the number

of lost transitions to j that occur as a result of having started in i rather than j,

our interpretation introduces correlation functions to formalise the interpretation of

Kemenys constant as describing the invariance of the decay to equilibrium. We can

start with our continuous time expression for the mean first passage time.

t′ji =
1

peqj

∑
`>1

1

λ`
ψ
(`)
j (φ

(`)
j − φ

(`)
i ) (2.59)

Adding and subtracting ψ
(1)
j and bearing in mind that φ

(1)
i = 1 ∀ i, we can refor-

mulate the vector products in terms of matrix elements

t′ji =
1

peqj

[
−ψ(1)

j φ
(1)
j +

∑
`>1

1

λ`
ψ
(`)
j φ

(`)
j

+ψ
(1)
j φ

(1)
i −

∑
`>1

1

λ`
ψ
(`)
j φ

(`)
i

]
(2.60)

=
1

peqj

[
(Peq1Tn −K)−1jj − (Peq1Tn −K)−1ji

]
(2.61)

where we have used Peq = ψ(1) and 1Tn = φ(1).

Now we can write the mean first passage time in terms of correlation functions.

peqj t
′
ji =

∫∞
0
Ceq
jj (τ)dτ

peqj
−
∫∞
0
Ceq
ji (τ)dτ

peqi
(2.62)

And so the Kemeny constant can be expressed in terms of the time-integrated
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correlation functions.

∑
j

peqj t
′
ji =

∑
j

[∫∞
0
Ceq
jj (τ)dτ

peqj
−
∫∞
0
Ceq
ji (τ)dτ

peqi

]
(2.63)

Expressing the correlation function in terms of the rate matrix exponential we can

arrive at equation 2.64 and see that the Kemeny constant can be interpreted as the

additional time required for the system to converge to equilibrium as a result of starting

in i rather than j. Since we are summing over every j, every possible dynamics in the

system will be considered (hence the sum of relaxation times interpretation) and the

choice of i will not matter.

∑
j

peqj t
′
ji =

∑
j

[ ∫ ∞
0

[eKτ ]jj − peqj dτ −
∫ ∞
0

[eKτ ]ji − peqj dτ
]

(2.64)

2.6.4 Hummer-Szabo Kemeny Variational Principle

We would like to show that when we use the HS protocol to perform a clustering,

the Kemeny constant of the clustered system is always less than that of the original

unclustered system11. This would enable us to reliably use the Kemeny constant as a

variational parameter for clustering.

The Kemeny constant was used in a recent study examining community detection in

general networks [112]. This study was reliant on the argument that highly connected

networks will tend to have low values of Kemeny (short MFPTs) while poorly connected

networks will have high Kemeny values (high MFPTs). Here we formalise this concept

by showing the variational behaviour of the Kemeny constant under HS clustering

and also offering an analytically exact interpretation of its optimization. We begin by

considering the MFPT of the clustered system in terms of the correlation functions as

11To avoid confusion later, it is important to remember that the ’constant’ part of the Kemeny
constant is that its MFPT representation is independent of a microstate index. However the Kemeny
constant does not remain constant after Hummer-Szabo clustering.
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derived previously in equation 2.62.

P eqJ tJI =

∫ ∞
0

C̄JJ(τ)

peqJ
dτ −

∫ ∞
0

C̄JI(τ)

peqI
dτ (2.65)

The HS protocol provides us with a means to connect the cluster correlation func-

tions with the original.

P eqJ tJI =
1

peqJ

∑
j∈J,j′∈J

∫ ∞
0

C̄jj′(τ)dτ − 1

peqJ

∑
j∈J,i∈I

∫ ∞
0

C̄ji(τ)dτ (2.66)

Both terms on the right can be substituted for using equation 2.63.

P eqJ tJI =
1

peqJ

∑
j∈J,j′∈J

peqj′

[ ∫ ∞
0

C̄jj(τ)

peqj
dτ − peqj tjj′

]

− 1

peqI

∑
j∈J,i∈I

peqi

[ ∫ ∞
0

C̄jj(τ)

peqj
dτ − peqj tji

]
(2.67)

Simplifying equation 2.67 results in equation 2.68.

P eqJ tJI =
1

peqI

∑
j∈J,i∈I

peqi p
eq
j tji −

1

peqJ

∑
j∈J,j′∈J

peqj′ p
eq
j tjj′ (2.68)

Finally summing over all macrostates J produces a bound for the Kemeny constant

given by equation 2.69.

ζHS = ζorig −
∑
J

peqJ
∑

j∈J,j′∈J

peqj′

peqJ

peqj
peqJ

tjj′ (2.69)

This bound represents the expectation value of mean first passage time if two states

are drawn from within the same cluster with equilibrium probability. As such, this

becomes smaller as the states become increasingly metastable (interconversion is fast)

and vanishes to zero only when each macrostate consists of one microstate (i.e. no

clustering performed).
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2.6.5 Choice of Clustering Parameter

Now that we have demonstrated the slowest relaxation time is variational for HS and LE

and the Kemeny constant is variational for HS, we proceed to assume that the empirical

observation of variational eigenvalues holds true in general. Given this assumption,

what variational parameters should we choose? In principle any linear combination of

the relaxation times would be feasible (equation 2.70 where cn ∈ R).

N∑
n=2

cnτn (2.70)

Given this endless combination of possibilities, what should we choose to inves-

tigate? The starting goal of this project was to develop a method which would be

automatic and would (as much as possible) remove the need for complicated or non-

intuitive parameter choosing. To this end, we restrict ourselves to cn equal to zero or

one. In particular we will examine using each individual relaxation time τ2 up to τN

and the truncated summation
∑n′

n=2 τn (for some n′ ≤ N).

These two choices seem reasonable, the single relaxation time optimization should

favor preserving the associated kinetic process while the truncated summation will

favor preserving multiple kinetic processes in accordance with their relative size (so

fast processes will have little influence on the summation optimization). In the results

section of this chapter we will examine, for a number of simple test cases, the effect

of using the Hummer-Szabo clustering approach to variationally optimize the above

parameters.

2.7 Results

With the variational proofs of the previous section, we examine qualitatively on a

number of illustrative examples, the effect of implementing our suggested procedure.

We use the relaxation timescale based variational parameters in conjunction with the

Hummer-Szabo clustering to attempt to identify metastable and transition states and
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compare our results to the commonly used PCCA+ algorithm described earlier in the

chapter. We will examine three artificially produced potential energy landscapes.

• A smooth potential with multiple wells of varying depth.

• A noisy version of the aforementioned multiwell potential.

• A two-dimensional potential energy surface with multiple wells.

To construct our toy model potentials, we defined our potential of interest V (x)

(or V (x, y)) and discretized the x coordinate in to sufficiently fine states such that

the difference in potential between neighbouring states is small. From this discretized

potential we then defined our K matrix using an Arrhenius rate model as in equation

2.71. A is the Arrhenius factor, it has units of inverse time and controls the timescale

of the rate matrix. For the purposes of our study here, this value is arbitrary as it

controls the magnitude of the relaxation timescales but not their relative size. kB and

T are the Boltzmann constant and temperature respectively.

Kji = Ae
−
Vj−Vi
kBT (2.71)

With this K matrix we can then implement our iterative procedure, searching

through each possible clustering with HS and finding that which optimizes our chosen

timescale parameter.

2.7.1 Smooth Multiwell Potential

The first potential we examine is a smooth potential with four wells of varying depth.

We examine clustering in to four and five states. For the four states as shown in

figure 2.3 we compare using i)τ2, ii)τ3, iii)τ4 and iv) PCCA+. We observe in figure

2.3 that all the parameter choices identify the four metastable states in the system.

By extension, since the individual timescales find the same clustering, the truncated

summations (
∑3
n=2 τn and

∑4
n=2 τn) will also find the four metastable states.
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Figure 2.3: Eigenvalue clustering vs PCCA+ for smooth potential four state clustering

Following from this we examine next the first potential again but now with a five

state clustering as seen in figure 2.4. Interestingly, every timescale based clustering now

identifies a transition state which connects the regions whose dynamics are governed

by the smallest τn used. For example, the τ2 clustering again finds a transition state

centered upon the highest free energy boundary, the τ3 (and
∑3
n=2 τn) finds a transition

state on the second largest boundary and similarly for τ4 (and
∑4
n=2 τn). The PCCA+

in contrast attempts to split up the least stable state in to two pieces. Meanwhile,

the Kemeny constant (
∑5
n=2 τn) (not included in figure 2.4) identifies an identical

clustering to PCCA+.

It is perhaps unsurprising that each timescale favors placing a transition state in the
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Figure 2.4: Eigenvalue clustering vs PCCA+ for smooth potential five state clustering

region which describes its dynamics. What is more unexpected is that for the truncated

summation of timescales, it is the smaller timescale which dictates the transition state

region. It appears that, for example in using
∑3
n=2 τn, placing the bottleneck on the

second highest barrier is more beneficial to τ2 than placing on the highest barrier would

be to τ3. This will be dependent on the relative magnitude of the relaxation times.

Clearly as τ3 becomes very small then it will no longer be favorable to place a transition

state which limits according to the τ3 dynamics.

These timescale based variational parameters appear promising for the automatic

identification of both metastable and transition state regions. We have also seen that

for the simple 1-D case, the truncated summations produce the same clustering as
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that of their smallest timescale. Meanwhile the Kemeny constant finds an identical

clustering to the PCCA+. For the rest of this results section we examine two more

test cases to deepen our understanding and test our method further. First we see how

robust these results are to noise in the potential by adding random Gaussian noise.

Secondly we examine how these methods perform on higher-dimensional potentials.

2.7.2 Noisy Multiwell Potential

Figure 2.5: Eigenvalue clustering vs PCCA+ for noisy potential four state clustering

In the previous section, we considered a very idealised smooth potential. In reality

these free energies are likely to be noisy due to insufficient sampling either along the

coordinate of interest or on some faster degree of freedom. To try to account for

63



these more realistic situations we add some random Gaussian noise to the potential

considered previously and examine the same clusterings. As before we cluster in to

four and five states using the same selection of timescale based variational parameters

and PCCA+. For the four state clustering presented in figure 2.5, effectively the

same results are observed with all methods identifying the four metastable states. The

truncated sum (again omitted for brevity) produces identical results.

More interesting is to examine the five state clustering results. The timescale based

clusterings reproduce their bottleneck states as before while now PCCA+ has moved

from splitting the least metastable state in two to identifying what appears to be the

next most metastable state in the system (and the Kemeny constant (not shown) pro-

duces the same result). This demonstrates that in more realistic noisy cases, PCCA+

and the Kemeny constant are geared towards finding metastable states and as such

will find metastable states that are perhaps not due to the underlying potential but

rather are due to the noise. Importantly, the results of the single timescale variational

clustering appear to be robust to the addition of noise to the system.

2.7.3 Two-dimensional Potential Energy Surface

In this final test case we apply the proposed clustering algorithm to a two-dimensional

potential energy surface with three metastable wells (as shown in figure 2.7). The three

well potential considered is given in equation 2.72 (in units of kcal/mol) with x and

y both taking values in the range [−0.6π, 0.6π]. c is a constant value such that the

function takes a minimum value of 0 on this domain of values.

v(x, y) = −8(e−2(x−1.3)
2−2(y−1.3)2 + e−2(x−1.2)

2−2(y+1.2)2 + e−2(x+1.3)2−2(y+0.9)2) + c

(2.72)

This is an interesting test case as for higher dimensional models the number of
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Figure 2.6: Eigenvalue clustering vs PCCA+ for noisy potential five state clustering

possible permutations grows rapidly. The kinetic pathways can also become linked to-

gether, as opposed to the 1-D case where the various transition states were completely

separate. It is in this case where it becomes interesting to examine both the single

relaxation times and the truncated summations since they produce distinct cluster-

ings and the difference in those clusterings serves to deepen our understanding of the

forces at work in this parameter optimization. Given that our potential contains three

metastable states we will consider three, four and five state clustering.

There is a wide combination of cluster numbers and parameter choices which we

could present here, but not all of these choices lead to sensible or useful results. Here
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Figure 2.7: 2D potential energy surface

in figure 2.9 we present a selection of figures which illustrate our suggested protocol for

applying this eigenvalue procedure to multi-dimensional models. First we cluster using

the Kemeny constant to identify the maximally metastable clustering. If we cluster

with Kemeny while seeking for more clusters than are present in the system then we will

find that one of the returned clusters is several orders of magnitude smaller than the

others. This allows us to assess how many metastable states are present. Once it has

been determined that there are three metastable states we can extend to identifying

transition states by searching for four or five clusters with kinetic parameters other

than Kemeny. But which parameters should be used to find these transition regions?

We find that it is not advisable to cluster using single eigenvalues (other than τ2).

66



For example clustering in to four states using τ3 produces figure 2.8. This groups states

in a bad way but given our parameter choice we can understand why it has grouped

in the way it has. Since the clustering cares only about maximising τ3 and has no

interest in τ2, it extends the metastable state for the most stable cluster in to being a

transition state region to make the τ3 process slower. This non-sensible distortion was

not possible in the one-dimensional case since there was no way for the most stable

state to deform and contribute to the τ3 process.

Figure 2.8: 2D clustering in four states with τ3

If we look instead at figure 2.9 (b) and (c), here we cluster in to four states using

τ2 and
∑3
n=2 τn respectively. Again the resultant clustering can be interpreted in

our choice of parameter. In maximising τ2, we see that a transition state region is

placed around the most stable state. However the optimization assigns some of the

high potential region in the lower right corner to one of the metastable clusters. By

instead using
∑3
n=2 τn, the system now has an incentive to care about the nature of the

boundary between states 3 and 4 and reassigns this high potential region to belong to
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Figure 2.9: 2D potential energy clustering

the transition state such that transitions from 3 to 4 only happen through the pathway

connecting them.

Finally if we choose to do a five state optimization using
∑3
n=2 τn (figure 2.9 (d))

as our variational parameter (since these are the two timescales governing metastable

transitons) then we can identify our three metastable states as well as two transition

state regions describing the dynamics.
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2.8 Conclusions

We have examined the impact of performing a timescale based clustering with the

Hummer-Szabo method. Given our observations, we make the following suggested

protocol for implementing timescale based clustering.

1. Perform coarse-graining using Kemenys constant for increasing numbers of clus-

ters until a state is returned which is much smaller in magnitude than the other

clusters. This provides the number of metastable states Nstable.

2. If the potential is 1-D, then use the kinetic parameters τ2, ..., τNstable−1 to find

the transition states linking the key metastable regions.

3. If however the potential is multidimensional, cluster in to Nstable + 1 up to

2Nstable − 1 clusters using
∑Nstable−1
n=2 τn as a parameter to ensure that all the

timescales are accounted for.

For 1-D systems we found that the approach is able to automatically and robustly

identify both metastable states and transition state regions. The truncated sum of

timescales up to τn as well as the individual timescales will find all metastable regions

as well as a transition state along the pathway connecting the states whose dynamics is

described by timescale τn. In contrast, the PCCA+ algorithm, does not explicitly pick

up any transition state although in a noisy potential it will pick up increasingly small

metastable states. It may happen though that (as in our presented example) these

small metastable states are just artefacts of the distorted potential energy obtained

from the insufficient sampling of microstates. In the case of the 2-D systems, we saw

that due to the merging of kinetic pathways, we needed to be more careful regarding

our choice of kinetic parameters.

The important take away from this chapter is that we have at this point obtained

promising initial results that relaxation timescales can be used to automatically identify

metastable and transition states. We can identify multiple transition state regions
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from which to reinitialise simulations even when the potential energy is noisy. This

is especially promising because it would be unhelpful for improving simulations if we

were to require a well-converged potential in order to identify the transition states.

With this new method for identifying clusters in kinetic models, in the next two

chapters we will first try and develop an analytic framework for thinking about and

interpreting the results of this chapter and secondly we will develop an algorithmic

approach for efficiently implementing this procedure on general networks.
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“One of the principal objects of theoretical research in

any department of knowledge is to find the point of view

from which the subject appears in its greatest simplic-

ity.”

J. Willard Gibbs

3
Mean First Passage Time Analysis

3.1 Introduction

We now know that when implementing either the HS or LE clustering protocol that

the slowest relaxation time will be variational (as will be the Kemeny constant). The

next question is to ask precisely what choice of microstate clustering is obtained when

using this procedure. In this chapter we will investigate the clustering which optimises

the slowest relaxation time in some particular cases since we already have an intuitive

interpretation for the Kemeny constant.
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We will go through the following steps:

1. Assume our system has an underlying dynamics which is well described by a 1-D

Smoluchowski equation.

2. Write the slowest relaxation time in terms of time-integrated correlation func-

tions.

3. Use a useful result of Perico and Szabo [113] to write the time-integrated corre-

lation function as an integral over space of the potential energy.

4. Rewrite this spatial integral in terms of mean first passage times to an absorbing

boundary.

5. Differentiate the mean first passage times with respect to the position of the

absorbing boundary to find a condition which maximises the slowest relaxation

time.

We are going to do this for two analytically tractable cases, i) a two state clustering

on an arbitrary potential and ii) a three state clustering on a symmetric potential. We

postulate that this framework for interpreting relaxation times as mean first passage

times holds great promise for developing intuitive explanations for relaxation timescale

based clustering and could potentially be extended to better understand the results of

higher dimensional clustering.

3.2 Theory

3.2.1 Smoluchowski Equation

The first step is to make the assumption that the dynamical system which is being

investigated is well described by a single variable Smochulowski equation. This is

known to be a valid assumption for many systems of biological interest [114–116]. The

72



objective of performing this analysis is to gain interpretable insight, so a simple 1-

D model is favoured. Although the results presented here are one dimensional it is

likely that the equations can be generalized to multidimensional dynamics. The 1-D

Smoluchowski equation along a coordinate x is written as a Fokker-Planck evolution

of conditional probabilities as in equation 3.1.

j (x, t|x0, t0) = De−βV (x)∇eβV (x)p (x, t|x0, t0) (3.1)

Here j is the probability flux between states, V is the potential which governs

the dynamics and D is the diffusion constant. β is equal to 1/kBT where kB is the

Boltzmann constant and T is the temperature.

For the analysis/interpretation framework which we are going to layout in this

chapter, we will need to have expressions for the mean first passage times between

regions/to hit absorbing boundaries for the Smoluchowski equation. For the sake of

brevity, we provide these results without derivation as they have been derived and

applied in many existing works in the context of reaction rate theory [117]. The mean

first passage time from a starting point x0 to an absorbing boundary at a (given a

reflecting boundary at b) is given by equation 3.2.

〈t (x0)〉 =

∫ x0

a

eβV (ξ)

D(ξ)
dξ

∫ b

ξ

e−βV (η)dη (3.2)

If the starting position is not a single position but a region of space (x0 = [a, b])

then the mean first passage time from the region to the absorbing boundary is given

instead by equation 3.3.

〈t (x0)〉 =

∫ x0

a

eβV (ξ)

D(ξ)
dξ

[ ∫ b
ξ
e−βV (η)dη

]2
∫ b
a
e−βV (η′)dη′

(3.3)
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3.2.2 Relaxation Times and Correlation Functions

As we saw from Chapter 2 with our examination of the Kemeny constant, there is a close

relationship between time-integrated correlation functions and relaxation timescales.

This is intuitively reasonable as both quantities have the interpretation of describing a

systems speed of convergence to equilibrium.

Since the Kemeny constant has an immediate link to MFPTs and we already have

an interpretation in terms of metastability maximisation, we will not consider it here

but will focus on trying to describe the clusterings obtained via using the slowest

relaxation time, τ2, as a variational parameter as this leads to the less immediately

intuitive transition states.

Two State Clustering

For a two state clustering, from the fluctuation-dissipation theorem it can be shown

that the relaxation time is related to the time correlation function of the θ(x) function

defined in section 2.4 [99] where δθ1(x) = θ1(x)− 〈θ1〉 and 〈θ1〉 =
∫ a
−∞ e−βV (x)dx∫∞
−∞ e−βV (x)dx

.

∫ ∞
0

C̄11(t)dt =

∫ ∞
0

〈δθ1(0)δθ1(t)〉
〈δθ1(0)2〉

dt (3.4)

∫ ∞
0

〈δθ1(0)δθ1(t)〉
〈δθ1(0)2〉

dt =

∫ ∞
0

[eKt]11P
eq
1 − P

eq
1 P eq1

P eq1 (1− P eq1 )
(3.5)

We can now spectrally decompose the rate matrix and simplify the integrand.

=

∫ ∞
0

∑2
n=1 e

λntψLn (1)ψRn (1)− P eq1
(1− P eq1 )

dt (3.6)

=

∫ ∞
0

eλ2tψL2 (1)ψR2 (1)

P eq2
dt (3.7)

For a two state system, some simple relations for the eigenvectors (normalization

and orthogonality) make it straightforward to show that the term multiplying the
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exponential is equal to 1 and so one is left with just the integral.

=

∫ ∞
0

eλ2tdt =
−1

λ2
= τ2 (3.8)

So we can write the relaxation time as a time-integral of correlation functions.

τ2 =

∫ ∞
0

C̄11(t)dt =

∫ ∞
0

〈δθ1(0)δθ1(t)〉
〈δθ1(0)2〉

dt (3.9)

Three State Symmetric Clustering

We can also write the slowest relaxation time of a three state clustering in terms of time-

integrated correlation functions if we assume the underlying potential is symmetric. By

assuming the potential is symmetric, we reduce the two boundary optimization to a

single boundary optimization. This reduces the number of free parameters in our

correlation matrix.

We begin by considering our 1-D symmetric potential from −∞ to ∞ which is

divided in to three regions labeled as 1, 2 and 3 with the boundaries between these

regions placed at −a and a1. We use our earlier definition of an associated number

function δθi(t). If we now consider our correlation function as being generated by an

underlying 3 state rate matrix R and associated left and right eigenfunctions [118]:

∫ ∞
0

CIJ(t)dt =

∫ ∞
0

(
[etR]IJP

eq
J − P

eq
I P eqJ

)
dt (3.10)

Doing a spectral decomposition of the right hand side of the equation:

∫ ∞
0

CIJ(t)dt =

∫ ∞
0

3∑
n=2

[eλnt]ψRn (I)ψLn (J)P eqJ dt (3.11)

1Since the potential is symmetric and centered upon 0, we must have that the two boundaries are
equally spaced on each side (i.e. that regions 1 and 3 are identical), so our two boundary optimization
is really a single boundary problem.
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=

∫ ∞
0

3∑
n=2

[eλnt]ψRn (I)ψRn (J)dt (3.12)

Then writing these elements out explicitly and exploiting that ψR2 (2) = 0 (and

calling the matrix C for a shorthand notation).

C =

∫ ∞
0


eλ2t(ψR2 (1))2 + eλ3t(ψR3 (1))2 eλ3tψR3 (1)ψR3 (2) eλ2tψR2 (1)ψR2 (3) + eλ3tψR3 (1)ψR3 (3)

eλ3tψR3 (1)ψR3 (2) eλ3t(ψR3 (2))2 eλ3tψR3 (2)ψR3 (3)

eλ2tψR2 (1)ψR2 (3) + eλ3tψR3 (1)ψR3 (3) eλ3tψR3 (2)ψR3 (3) eλ2t(ψR2 (3))2 + eλ3t(ψR3 (3))2

 dt

Since we are considering the special case of a symmetric potential we have the

following identities:

ψR2 (1) = −ψR2 (3) (3.13)

ψR3 (1) = ψR3 (3) (3.14)

2ψR3 (1) + ψR3 (2) = 0 =⇒ ψR3 (2) = −2ψR3 (1) (3.15)

C =

∫ ∞
0


eλ2t(ψR2 (1))2 + eλ3t(ψR3 (1))2 −2eλ3t(ψR3 (1))2 −eλ2t(ψR2 (1))2 + eλ3t(ψR3 (1))2

−2eλ3t(ψR3 (1))2 4eλ3t(ψR3 (1))2 −2eλ3t(ψR3 (1))2

−eλ2t(ψR2 (1))2 + eλ3t(ψR3 (1))2 −2eλ3t(ψR3 (1))2 eλ2t(ψR2 (1))2 + eλ3t(ψR3 (1))2

 dt

We can recognise that C has the form given below with only two free parameters,

X and Y .
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C =


X Y −X − Y

Y −2Y Y

−X − Y Y X


A matrix of this form will have eigenvalues given by 3.16.

µ =


0

2X + Y

−3Y

(3.16)

Using this we find that the second eigenvalue of C is given by:

µ2 =

∫ ∞
0

2eλ2t(ψR2 (1))2dt (3.17)

From the normalization of eigenvectors (and again exploiting symmetry) we can

write the square of the first element of the second right eigenvector in terms of the

equilibrium probabilities.

3∑
i=1

(ψR2 (i))2

P eqi
= 1 =⇒ (ψR2 (1))2 =

P eq1
2

(3.18)

Substituting this value for ψR2 (1) in and performing the integration produces equa-

tion 3.19.

µ2 =
−P eq1
λ2

=⇒ λ2 =
−P eq1
µ2

(3.19)

If we substitute in the our known expression for µ2 in terms of correlation function

elements (from equation 3.16) then the quantity to be analytically maximised is given in

terms of the equilibrium probability and the two unique integrated correlation function
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elements.

λ2 =
−P eq1

(2C11 + C12)
(3.20)

Equivalently, we can write equation 3.20 in terms of relaxation time by inverting.

τ2 = − (2C11 + C12)

P eq1
= − 1

P eq1

(
2

∫ ∞
0

〈δθ1(0)δθ1(t)〉dt+

∫ ∞
0

〈δθ1(0)δθ2(t)〉dt
)

(3.21)

We have explicit expressions for the slowest relaxation time in a two state system

and a three state symmetric system and so we can proceed to convert these expressions

in to mean first passage times and extremise with respect to the boundary position.

3.2.3 Correlation Functions and Spatial Integrals

The final piece of theory we need to introduce in advance of our results section is the link

between time-integrated correlation functions and spatial integrals over the potential

energy. Perico and Szabo [113] showed that (where β = 1
KBT

) the time integral of an

autocorrelation function can be written as a spatial integral over the whole coordinate

as in equation 3.22.

∫ ∞
0

〈δθ(x(0))δθ(x(t))〉dt =

∫ ∞
−∞

dx

De−βv(x)

[ ∫∞
x
δθ(y)e−βv(y)dy

]2
∫∞
−∞ e−βv(x)dx

(3.22)

This relation allows us to now directly connect our relaxation time to a spatial

integral with a dependence on the boundary positions.
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3.3 Results

3.3.1 Two State Relaxation Time

To calculate the relaxation time in terms of populations and MFPTs, we need to

calculate two quantities
∫∞
0
〈δθ1(0)δθ1(t)〉dt and 〈δθ1(0)2〉. Using equation 3.22 to

rewrite our two-state relaxation time, we have equation 3.23.

∫ ∞
0

〈δθ1(0)δθ1(t)〉dt =

∫ ∞
−∞

dx

De−βv(x)

[ ∫∞
x
δθ1(y)e−βv(y)dy

]2
∫∞
−∞ e−βv(x)dx

(3.23)

Next we split the integral into two segments, one running from −∞ to a (re-

gion 1) and the other from a to ∞ (region 2). We also make use of the fact that∫∞
−∞ δθ1(y)e−βv(y)dy = 0 to change the limits of the inner y integral.

C11 =

∫ a

−∞

dx

De−βv(x)

[ ∫ x
−∞ δθ1(y)e−βv(y)dy

]2
∫∞
−∞ e−βv(x)dx

+

∫ ∞
a

dx

De−βv(x)

[ ∫∞
x
δθ1(y)e−βv(y)dy

]2
∫∞
−∞ e−βv(x)dx

(3.24)

We exploit the properties of the number function and define some state normalised

probabilities p1(x) and p2(x).

p1(x) =
e−βV (x)∫ a

−∞ e−βV (x)dx
(3.25)

p2(x) =
e−βV (x)∫∞

a
e−βV (x)dx

(3.26)

With these normalised probabilities, one can rewrite the time-integrated correlation

function in the form of equation 3.27.
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∫ ∞
0

〈δθ1(0)δθ1(t)〉dt =

〈θ1〉2〈θ2〉
∫ a

−∞

dx

Dp1(x)

[ ∫ x

−∞
p1(y)dy

]2
+

(〈θ2〉)2〈θ1〉
∫ ∞
a

dx

Dp2(x)

[ ∫ ∞
x

p2(y)dy

]2
(3.27)

Similarly 〈δθ1(0)2〉 is expressed as:

〈δθ1(0)2〉 = 〈θ1〉〈θ2〉 (3.28)

In our current notation, the expected value of the theta function is equivalent to

the population of the state so we replace these with p1 and p2. To avoid confusion we

emphasise the distinction between p1 and p1(x), p1 is the population of state 1 while

p1(x) is the population of position x relative to the population of state 1. With these

definitions we have the relation that p1p1(x) = p(x) (or equivalently that p1(x) = p(x)
p1

so p1(x) is the population of the state relative to that of state 1). Using this and

combining equations 3.27 and 3.28 with equation 3.9 we can obtain a more easily

differentiable expression in the form of equation 3.29.

τ2(a) = p2

∫ a

−∞

dx

Dp1(x)

[ ∫ x

−∞
p1(y)dy

]2
+ p1

∫ ∞
a

dx

Dp2(x)

[ ∫ ∞
x

p2(y)dy

]2
(3.29)

The mean first passage times to the barrier from each side are given by the integrals

in the above equation (see reference [119] for details).

ta2 =

∫ ∞
a

dx

Dp2(x)

[ ∫ ∞
x

p2(y)dy

]
, (3.30)

In equation 3.30, ta2 is the expected time to reach a boundary a with a starting pointing

chosen randomly from state 2 with equilibrium probability (ta1 is equivalently defined).
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With this, 3.29 can be written in the compact form of equation 3.31.

τ2(a) = p2ta1 + p1ta2 (3.31)

Since we have managed to write the relaxation time in terms of mean first passage

times, we can differentiate with respect to the boundary position and find the condition

which will maximise the relaxation time.

3.3.2 Optimization of Two State Boundary Position

The optimal barrier will be such that the τ2 is maximized with respect to the barrier

position a.

dτ2
da

= 0 (3.32)

This requires the calculation of the derivative of each of the four components of

equation 3.31. The derivatives of the p terms are straightforward to calculate.

dp2
da

=
−e−βv(a)∫∞
−∞ e−βv(x)dx

= −p(a) (3.33)

dp1
da

=
e−βv(a)∫∞

−∞ e−βv(x)dx
= p(a) (3.34)

The more difficult term to differentiate is the mean first passage time. This requires

use of the Leibniz integral rule [120] for differentiation with respect to the limits of an

integral.

d

dx

(∫ b(x)

a(x)

f(x, t) dt

)
= f(x, b(x)) · b′(x)

− f(x, a(x)) · a′(x) +

∫ b(x)

a(x)

∂

∂x
f(x, t) (3.35)
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Applying this gives the following result for the mean first passage terms.

dta2
da

=
d

da

(∫ ∞
a

dx

Dp2(x)

[ ∫ ∞
x

p2(y)dy

]2)
(3.36)

=
−1

Dp2(a)
+

∫ ∞
a

dx

[
d

da

(
1

Dp2(x)

)[∫ ∞
x

p2(y)dy

]2
+

(
1

Dp2(x)

)
d

da

[ ∫ ∞
x

p2(y)dy

]2]
(3.37)

=
−1

Dp2(a)
+

∫ ∞
a

dx

[
−e−βv(a)

De−βv(x)

[ ∫ ∞
x

p2(y)dy

]2
+

2

Dp2(x)

e−βv(a)∫∞
a
e−βv(x)dx

[ ∫ ∞
x

p2(y)dy

]2]
(3.38)

=
−1

Dp2(a)
− p2(a)ta2 + 2p2(a)ta2 =

−1

Dp2(a)
+ p2(a)ta2 (3.39)

A similar expression is found for the mean first passage time from the other side of

the boundary.

dta1
da

=
1

Dp1(a)
− p1(a)ta1 (3.40)

Substituing all these into equation 3.32 and simplifying it is found that the relax-

ation time is maximized at the condition given in equation 3.41.

p2(a)ta2 = p1(a)ta1 (3.41)

Equivalently this can be written in terms of the equilibrium probabilities of the two
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clusters in a ’flux to the boundary’ form.

p1
ta1

=
p2
ta2

(3.42)

This gives us back the intuitive result that the relaxation time will be optimized

by a boundary which ensures that the flux through the boundary is equal in both

directions.

3.3.3 Three State Symmetric Relaxation Time

In this section we present an equivalent derivation for the three state case we examined

earlier. We have the relaxation time in terms of the coarse-grained time-integrated

correlation functions. We first compute the relaxation time in terms of mean first

passage times similarly to before.

τ2 = − (2C11 + C12)

p1
= − 1

p1

(
2

∫ ∞
0

〈δθ1(0)δθ1(t)〉dt+

∫ ∞
0

〈δθ1(0)δθ2(t)〉dt
)

(3.43)

As in the previous derivation for the two boundary case, the C11 term behaves as

though we are doing a two state optimisation (1 vs 2+3) and can be written completely

analogously to equation 3.29.

C11 = (1− p1)2
∫ −a
−∞

dx

Dp(x)

[ ∫ x

−∞
p(y)dy

]2
+ p21

∫ ∞
−a

dx

Dp(x)

[ ∫ ∞
x

p(y)dy

]2
(3.44)

The time-integrated correlation function C12 can also be computed.

C12 = −p22
∫ −a
−∞

dx

Dp(x)

[ ∫ x

−∞
p(y)dy

]2
− 2p21

∫ a

−a

dx

Dp(x)

[ ∫ ∞
x

p(y)dy

]2
(3.45)
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+p21

∫ a

−a

dx

Dp(x)

[ ∫ ∞
x

p(y)dy

]
By substituting the expressions for C11 and C12 in to equation 3.43 we find that we

get a significant amount of cancellation such that our relaxation time can be written

simply as 3.46.

τ2 =

∫ −a
−∞

dx

Dp1(x)

[ ∫ x

−∞
p1(y)dy

]2
+ p1

∫ a

−a

dx

Dp(x)

[ ∫ ∞
x

p(y)dy

]
(3.46)

As with the two state case, we can recognise these integral quantities as mean first

passage times and rewrite τ2 concisely as equation 3.47.

τ2 = t−a1 + p1t−aa (3.47)

p1 is the probability to be in state 1. t−aa is the mean survival time for a particle

starting at a to hit the boundary at −a. t−a1 is the mean first passage time starting

from the region 1 to reach the boundary at −a.

3.3.4 Optimization of Three State Relaxation Time

Differentiating the relaxation time equation 3.43 with respect to the boundary position

a and equating to zero results in the equation 3.48 for optimal boundary placement.

p(a)(2C11 + C12) + p1
d(2C11 + C12)

da
= 0 (3.48)

We have expressions for C11 and C12 from the preceding section and simply need

to calculate their derivatives. We begin by differentiating equations 3.44 and 3.45.

dC11

da
= 2p(a)

[
(1− p1)

∫ −a
−∞

dx

Dp(x)

[ ∫ x

−∞
p(y)dy

]2
− p1

∫ ∞
−a

dx

Dp(x)

[ ∫ ∞
x

p(y)dy

]2]
(3.49)
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dC12

da
= −4(1−2〈n1〉)p(a)

∫ −a
−∞

dx

Dp(x)

[ ∫ x

−∞
p(y)dy

]2
+4〈n1〉p(a)

∫ a

−a

dx

Dp(x)

[ ∫ ∞
x

p(y)dy

]2

−2〈n1〉p(a)

∫ a

−a

dx

Dp(x)

[ ∫ ∞
x

p(y)dy

]
(3.50)

Putting the above together in equation (15) and cancelling terms results in the

simple expression in equation 3.51 for the condition of optimal relaxation time.

p1

∫ a

−a

dx

Dp(x)

[ ∫ ∞
x

p(y)dy

]
=

∫ −a
−∞

dx

Dp1(x)

[ ∫ x

−∞
p1(y)dy

]2
(3.51)

We can again interpret these quantities in terms of mean first passage times and

see that this equates the two quantities which we found previously to constitute our

slowest relaxation time.

p1t−aa = t−a1 (3.52)

In the results section of this chapter, we will see that this condition, whilst not

intuitive does result in the correct placement of the optimized boundaries. It is not

clear how to interpret this result, we speculate the condition of making the potential

symmetric in order to make the calculation tractable collapses the terms of the equation

in a way that obscures the deeper laws which are governing the optimal clustering.

Rewriting equation 3.52 in a flux representation one can see that the condition

can be stated as the flux of transitions hitting the boundary is equal to the rate of

transitions through the middle state.

p1
t−a1

=
1

t−aa
(3.53)
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3.4 Estimating MFPTs from MD data

We have derived analytically exact expressions for the MFPT conditions which describe

the 1-D clustering found by maximising the slowest relaxation time found by using the

Hummer-Szabo clustering in a two state and three state symmetric case. To test the

derived equations on a realistic model, we need to be able to estimate MFPT quan-

tities from discrete datasets. Here we present three possible ways of computing these

quantities: using Markov chain theory, explicit counting and discrete approximation of

the integral expressions of MFPTs.

3.4.1 MFPT from Markov Model

The first option is to construct a maximum likelihood Markov state model from the

simulation data [118] and use known theory of Markov chains to compute MFPTs

between states. We used the Meyer method [121, 122] to calculate MFPTs from the

obtained discrete state Markov model, which requires solving a system of simple linear

equations of the form in equation 3.54 (similarly to the derivation of the Kemeny

constant in section 2.6.3).

tji = τMji(τ) +
∑
j′ 6=j

Mj′i(τ)tjj′ , (3.54)

Mji(τ) is the Markovian transition probability to make a transition from i to j in

the time interval τ , and tji is the MFPT from state i to j.

3.4.2 Explicit counting from MD trajectories

The next approach we consider is to use the discrete time trajectory x = x1, x2, ..., xn

with timestep τ and to explicitly count the mean first passage time from the observed

transitions.

For example, if we observe the system to reach the boundary at times T1, T2, T3,

..., Tk, starting in state 2, then the number of steps spent in state 1 will be given by
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Figure 3.1: Illustration of calculating MFPTs by explicit counting on a periodic
coordinate.

N1 = T2−T1

τ , N2 = T4−T3

τ . Whenever the system crosses the boundary, it enters the

other state and so we use every second pair of crossing times to count the MFPT.

The other sum (T3 − T2,T5 − T4) is used for the MFPT from the opposite side of the

boundary. This idea is demonstrated in figure 3.1.

To perform this calculation in practice we consider the MFPT from each of our

microstates to the boundary. Let’s say for example that for crossing event i we observe

a trajectory of length Ni to reach the boundary. This trajectory is then immediately

followed by another trajectory of length Ni − 1 and then by Ni − 2 and so on until we

hit the boundary. We can the approximate the MFPT by taking the sum of all these

crossing events. We then divide this by the total simulation time in the state in order

to properly normalize. The formal expression of the above text is given in equation

3.55.

∑k/2
i

∑Ni
j=1 j∑k/2

i Ni
=

∑k/2
i (Ni − 1)Ni/2∑k/2

i Ni
(3.55)
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For the above equation to hold true, we assume that over long simulation times,

each microstate is explored with equilibrium probabilities. In the subsequent results

we will assume this to be true as this is typically assumed whenever one is constructing

a MSM. This algorithm only requires identifying the boundary crossing times over the

trajectories, therefore it can be more efficient than the previous approaches. However,

as it requires well converged trajectories, its numerical error due to non-Markovian

effects can be larger.

3.4.3 Discrete approximation of integrals

As a final alternative method, the derived MFPT relations can be approximated nu-

merically by discretizing the integral expressions by which their are defined. This

discretization requires knowledge of the diffusion coefficient D, which we have previ-

ously assumed to be constant. Since we do not known this value a priori the mean first

passage times obtained in this way will have the correct behaviour but not the correct

magnitude. Since they will be proportional to their true values, the position at which

they are equal will be unchanged (again this assumes a constant D). In terms of com-

putational efficiency, this method is much faster than the Hummer-Szabo method as

it requires only the equilibrium probabilities of the microstates involved. To illustrate

how one might impliment this in practice, a discretized form of the mean first passage

time ta1 is shown in equation 3.56.

ta1 =

xa∑
i=x1

∆x

Dp1(i)

[ i∑
j=x1

p1(j)∆x

]2
(3.56)

The integrals have been replaced with discrete summations over the microstate

positions where the microstate spacing is ∆x. One could obtain an estimate for the

diffusion coefficient by comparing the MFPTs obtained via discrete approximation

with those obtained by one of the previous two methods. We examine this method for

diffusion estimation in our results section.
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3.5 Computational Verification of Results

Thus far in this chapter, we have demonstrated that by assuming a diffusive process

with Smoluchowski dynamics we can make a connection betwen the Hummer-Szabo

clustering described in the previous chapter and analytic expressions for the mean first

passage time.

In this results section we demonstrate that our derived expressions hold true on

both synthetic data and molecular dynamics simulation trajectories. In particular we

show that the optimal clustering obtained from implementing Hummer-Szabo matches

exactly the clustering found by enforcing the MFPT condition derived previously.

3.5.1 Analytic Examples

The first examples considered are symmetric potentials, with double and triple well, as

shown in Fig. 3.2 and 3.3. These potentials are described by equations 3.57 and 3.58

respectively (where the values c0 and c1 are chosen such that v(x) takes the minimum

value 0 in the range −4π to 4π).

v(x) = − sin(
x− π

2
) + c0 (3.57)

v(x) = sin(
1.5x− π

2
) + c1 (3.58)

For each of these two potentials we consider two cases, two state clustering and

three state clustering. In each case we plot 6 quantities.

• The potential v(x).

• The left side of equation 3.41 (or equation 3.52).

• The right side of equation 3.41 (or equation 3.52).
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• The MFPT barrier position (location where the previous two quantities are

equal).

• The barrier predicted by implementing the variational HS protocol of chapter 2.

• The barrier predicted by using the PCCA+ clustering method.

Double-well Potential

Figure 3.2: Clustering of a Double Well Potential in to Two States

In figures 3.2 and 3.3 we show the result of clustering a 2D potential in to two and

three clusters respectively. In the 2 cluster case, we find that the intuitive result of

the clustering barrier being placed at the top of the potential at x = 0 is reproduced

in all three cases (HS, MFPT and PCCA+). However in the 3 cluster case we see a

divergence between the results obtained by HS/MFPT vs PCCA+. The HS/MFPT

identify two stable states separated by a transition state of finite size at the peak of

the potential. Importantly, the size of the transition state/ boundary positions match

exactly (the positions are shifted slightly to make both lines visible on the plot).
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In contrast, the PCCA+ does not find a transition state. The PCCA+ method

assigns to each microstate a probability to occupy each cluster. Implementing the

PCCA+ with 3 clusters finds that the states near the peak of the potential have a

non-zero probability to occupy the central cluster. However when examining which

cluster each microstate has the largest probability for, there is no microstate for which

the middle state is the most probable. As such, no microstates get assigned to this

middle region.

Triple Well Potential

In figures 3.4 and 3.5 we show the result of clustering a triple well potential in to two

and three clusters respectively.

In figure 3.4 we find that the mean first passage time quantities cross three times.

These three crossing correspond to two local maxima and one local minimum (seen

as two of the crossing points occur at large values than the other). This is intuitively

reasonable since clustering a symmetric triple well in to two states should lump two of

Figure 3.3: Clustering of a Double Well Potential in to Three States
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Figure 3.4: Clustering of a Triple Well Potential in to Two States

the wells together and have no preference for which pair it groups. In the figure, we

find that HS and MFPT once again find identical boundary positions at the peaks of

the energy barriers.

Again, we find that the PCCA+ algorithm obtains a distinct clustering. In this

case, it chooses a particularly bad clustering by dividing perfectly in two and splitting

the central well. This is problematic as now both of the macrostates will contain free

energy barriers within them, leading to highly non-Markovian effects. However, this

test is possibly harsh on the PCCA+ algorithm as in reality one is unlikely to obtain a

perfectly symmetric potential with equal height barriers. In a more realistic potential,

the PCCA+ will immediately switch to placing the barrier at the peak of the higher

boundary.

Examining the three cluster situation in figure 3.5, we observe that all three methods

(HS, MFPT and PCCA+) match exactly again as we would expect as all methods are

able to identify metastable states. In particular, we can see that PCCA+ is effective at

obtaining metastable state boundaries when the correct number of states is identified.
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Figure 3.5: Clustering of a Triple Well Potential in to Three States

3.5.2 Pentalanine MD simulation

The next test of the derived equations is to demonstrate that they hold true when

examining more realistic time series data such as MD simulation data. To do this we

generated data by performing simulations of pentalanine in a 20Å box of TIP3P water2

(figure 3.6). We used the online tool CHARMM-GUI for setting up the system [123].

CHARMM-GUI produces all the files need to perform the simulation but requires

the user to make some parameter decisions. The ligand was capped with an acetyl at

the N terminus and an methylamine group at the C terminus. Additionaly we solvated

the ligand with an explicit water box. The simulations were run using NAMD [124] at a

temperature of 300 Kelvin and time step of 2 femtoseconds with a Langevin thermostat.

Following an equilibration run, a total of 1 microsecond production run was performed.

To test the derived equations in this paper, the 10 backbone dihedral angles (Φ,Ψ)

of the peptide are extracted from the simulation data. As an example, here we used

2This box provides a 20Å buffer of water in each direction around the ligand, resulting in a cube
with each dimension approximately 42Å.
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Ψ1 and Φ1 to construct Markov models from which the mean first passage times can

be extracted. Similar results to those presented for Ψ1 and Φ1 were obtained and are

left to the appendix.

Figure 3.6: Illustration of the Ala5 simulation system.

Figure 3.7: Free energy profile and optimal boundaries for first pentalanine Ramachan-
dran angle.
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Figure 3.8: Explicit counting of MFPT from discrete data.

Applying the theory for estimating MFPTs described previously requires us to

account for the fact that the coordinates are periodic3. To address this, we fix one

boundary at the free energy maximum and then use our equations to identifying the

position of the other boundary.

We implemented both the explicit counting procedure and the integral approxima-

tion method to estimate the MFPTs, as well as the Hummer-Szabo method. We find

that like the analytic potentials the potentials are almost identical (figure 3.7). The

explicit counting is slightly shifted due to the errors from the finite trajectory data.

In figure 3.8, we examine more closely the MFPTs obtained from the explicit count-

ing. The error bars are obtained by splitting the trajectory in to four parts and calcu-

lating the variance on the resulting MFPTs. We can see that the functional dependence

of the counting method is similar to the other two approaches which agree very closely.

We postulate that the discrepency between the methods is due to the explicit counting

method being more sensitive to the equilibrium sampling of states and requiring longer

simulation data for accurate statistics.

At the same time, the agreement between the integral approximation and the

3For a periodic coordinate, two boundaries are required for a two state clustering.
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Markov model arises in part from our fitting the curves together to obtain an esti-

mate for the diffusion coefficient D. The closeness of the agreement demonstrates

that the assumption of a constant diffusion coefficient is a good approximation since

the Markov model MFPTs do not require the assumption of constant D. The fitted

diffusion coefficient is D ≈ 1.82 deg2/fs.

3.6 Conclusions

In this chapter we have examined the fundamental theory behind the timescale based

clustering procedure we proposed in Chapter 2. By connecting the clustered relax-

ation times to the MFPTs calculated on the underlying potential and optimising, we

were able to provide some simple kinetic equations which could describe the optimal

boundary positions.

We verified these equations by testing on two systems, a simple analytic test po-

tential and an MD simulation of a small peptide. We provided some discussion on

methods for the computation of mean first passage times from discrete time series data

and in analysing the MD simulation data contrasted the results obtained from using

different methods.

So far we have, in the past two chapters, examined a new eigenvalue based clustering

protocol and derived a mean first passage time based framework for interpreting and

analysing the results. The method has thus far proven effective at the tasks which

we derived it to do (robustly identifying transition states). However we have not yet

addressed the pressing issue that our method requires searching through all possible

clusterings to find the one which optimises the parameter. We come to this in the next

chapter by proposing an algorithm for efficient search through the clustering space to

optimise the variational parameter.
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“My candle burns at both ends; It will not last the night;

But ah, my foes, and oh, my friends— It gives a lovely

light!”

Edna St. Vincent Millay, A Few Figs from Thistles

4
Efficient Clustering of High Dimensional

Networks

4.1 Introduction

In the two previous chapters we have laid out a new eigenvalue based clustering method

for identifying coarse-grained states. The method suggests iteratively searching through

possible clusterings to find the variational optimum. In this chapter we extend this

method in two directions. Firstly, the suggested protocol of searching all clusterings
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clearly becomes inefficient for systems with large numbers of microstates or large num-

bers of clusters. To address this issue, we develop a parallel tempering inspired ap-

proach to improve the efficiency of this protocol. Secondly, we have thus far considered

only the clustering of kinetic network models such as MSMs. Here we will seek to ex-

tend this to more general geometric networks and demonstrate that the algorithm can

yield interesting results for systems of this kind. We begin by introducing the theory

of parallel tempering to motivate our new clustering algorithm.

4.2 Parallel Tempering

Parallel tempering is a simulation method which was developed for the purposes of

finding the minimum energy configuration of some physical systems [125]. One runs

N simulations of a system in parallel, each at a different temperature. After each

time step, each simulation is proposed to swap its current configuration for some new

configuration. If the proposed configuration reduces the energy (i.e. improves the

parameter to be optimized) then it is accepted, however if the energy is increased then

the configuration is only accepted with a probability that depends on the difference

between the current energy Eold and the proposed energy Enew as well the temperature

of the simulation Ti as in equation 4.1.

p = min

(
1, e

(Eold−Enew)
(

1
kBTi

))
(4.1)

kB is the Boltzmann constant. After some number of simulation steps, the configu-

rations at different temperatures are interchanged with a probability given in equation

4.2 where i and j index the simulations being interchanged.

p = min

(
1, e

(Ei−Ej)
(

1
kTi
− 1
kTj

))
(4.2)

Ei and Ti are the energy and temperature of simulation i respectively and sim-

98



ilarly for the j subscripts. This procedure results in the high temperature replicas

exploring the configuration space freely while the low temperature replicas find the

minimum energy state more delicately. The interchanging of configurations between

different temperatures means that if a high temperature simulation finds a good con-

figuration then this will be likely to cascade down to be explored more delicately by

lower temperature simulations.

4.3 Existing uses of Tempering

Tempering inspired approaches have been used beyond their original domain to find

configurations of systems which extremize some variational parameter of interest. Of

particular interest to our discussion here are the fields of network and graph theory

where tempering approaches have been used for finding communities in networks. In

these applications, they typically use modularity [126] as the parameter to optimise.

Modularity is a measure for whether the number of links between nodes within clusters

is greater than what would be expected if the links were generated uniformly at random.

These tempering approaches have been effective in the field at finding communities but

are not used in practice as they are computationally slow [127].

4.4 Parallel Tempering for Variational Clustering

We propose that a parallel tempering approach can be implemented for finding the

choice of clustering which optimises our chosen timescale parameter. We will here

consider this parameter to be the slow timescales in the system although this could be

adapted depending on the specific application (network modularity, conductance). In

this section, we lay out the steps in our new method Parallel Tempering for Variational

Clustering (PTVC).

First one calculates the rate matrix elements of the system if these are not already

known. Then using the obtained rate matrix K, one can identify the most kinetically
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distinct states either by looking for the pair of states which have the largest mutual

mean first passage time between them (i.e. i and j which maximise the mean first pas-

sage time in both directions as in equation 4.3)1. Once these two states are identified,

the remaining states can be ordered based on their likelihood to first reach one state

over the other.

max
i,j

(tij + tji) (4.3)

With this 1-D ordering of the states, a set of simulations can be initialised by plac-

ing boundaries randomly along the ordering. This placing of boundaries along the 1-D

ordering provides our starting configurations for the simulations2. Then at each time

step of the simulation, the nodes which are connected to neighbouring clusters are

identified and a swap is proposed. The value of the parameter for this new clustering

is calculated and accepted/rejected in the same manner as for traditional parallel tem-

pering in equation 4.1. The method described in words above is shown graphically in

figure 4.1.

Other methods in the field of network cluster identification have employed the idea

of introducing the concept of an artificial temperature to accelerate a variational search

through conformations [128], typically presented as ’simulated annealing’ methods.

These simulated annealing approaches have been shown to find optimized parameter

values but are slow. Our method differs from these existing methods in a number of

important respects.

• Simulated annealing progressively heats and cools the systems to explore con-

figurations. In contrast, parallel tempering runs parallel simulations at multiple

temperatures and interchanges configurations at neighbouring temperatures.

1One can also compute this pair of states by examining the second eigenvector of the rate matrix
and looking for the most negative and most positive elements. In our studied examples we found that
these two approaches often produced similar choices of i and j.

2To be exact we in fact attemptNbound different placements of boundaries (for some very large value
of Nbound) and take the best performing subset to initialise Nsim simulations (Nsim << Nbound).
This helps us to avoid wasting time by initialising simulations from very bad configurations.
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• Our method employs the kinetic timescales of the system as the variational pa-

rameter to identify transition states as opposed to modularity.

• We also introduce a kinetically motivated initial ordering of the states to enhance

the quality of the starting clusters.

Figure 4.1: Illustration of parallel tempering clustering algorithm.

A practical consideration that requires discussion is the choice of temperature to be

used. In this clustering context, the temperature has no physical motivation. It exists

only to manage the probability of accepting proposed switches for different simulations.

To determine the temperature we use, we propose to initialise the temperatures of all

simulations as T = Ti where i ∈ 1, ..., Nsim, T1 < T2 < ... < TNsim and TNsim <<

1. This effectively enforces that initially only proposed moves which optimize the

parameter are accepted. From here, we can then slowly increase the temperatures

(while tracking the acceptance probabilities) until the average acceptance probability

over all simulations reaches 50%3. This removes the danger of initially over estimating

3In order to finish with useful temperatures it is still important to make a good initial choice for
the range of magnitudes of the original temperatures. Although they all are initialised at much less
than 1, the initial relative magnitude will be preserved under linear scaling. As a rule of thumb, we
found three orders of magnitude from coldest to hottest (TNsim ≈ 103T1) was effective although this
will be somewhat dependent on the system of interest.
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the temperature and causing the clusterings in all parallel simulations to deform from

their initially well chosen configurations.

We demonstrate here that using this algorithm can yield dramatic speed increases

in finding the variationally optimal clustering. We will examine the speed increases

obtained for a high dimensional model which is difficult to compute exhaustively.

4.5 Application to Geometric networks

Having addressed the first of this chapters two aims by developing a new algorithm for

efficiently identifying optimal clusterings, we now discuss how the variational protocol

which we have developed might be extended to more general geometric networks (as

opposed to the kinetic networks we have examined thus far).

In a geometric network we have a set of nodes and an associated adjacency matrix

A that describes which pairs of nodes are connected. For example, Aij equals one if i

and j are connected and is zero otherwise. In this model, there is no inherent definition

of kinetics so to apply our approach to identify clusters4 we need to define a rate matrix

K from our adjacency matrix.

To artificially construct a rate matrix for the geometric network we define the

transition rates from the adjacency matrix via equation 4.4 so that each nodes outward

flow is distributed over all the nodes to which it is connected. This will allow less well

connected nodes to have fast transition rates to highly connected nodes.

kji =
Aji∑
i′ Ai′i

(4.4)

Due to the nature of how we made the transition from the adjacency matrix to the

rate matrix, we will be restricted to applying our algorithm to networks which are well

approximated by a stochastic block model (SBM) [129, 130]. The adjacency matrix of

4What we have thus far referred to as clusters are typically called ’communities’ in the networks
field.
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a SBM is constructed according to equation 4.5.

P (Aij = 1) =
cW (xi, xj)

NP (xi)P (xj)
(4.5)

xi ∈ 1, ..., q indicates to which cluster node i belongs (where there are q clusters

in total). P (xi) is the probability of a node being in cluster xi. W (xi, xj) is the

probability of a link existing being cluster xi and xj . N is the total number of nodes

in the network and c is a chosen constant which gives the average number of edges per

node.

Existing methods for identifying clusters in geometric networks typically focus on

either using the eigenvectors of the adjacency matrix (similarly to PCCA+) or opti-

mizing some geometric parameter such as modularity (a measure of whether the nodes

within the cluster have a greater than random density of linkage). In close parallel

to the MD simulation field, these methods are effective at finding highly connected

regions of the network but do not typically identify the transition state like regions

which we have been interested in in this thesis (for a comprehensive overview of cluster

identification see reviews by Fortunato [127,131]).

4.6 Results

In the results section of this chapter we examine the clusterings obtained for some

geometric networks and also investigate how the algorithms efficiency scales with the

number of possible clusterings.

4.6.1 Computational Efficiency

The number of possible arrangements of states for a system with Nmicro microstates

and Nmacro macrostates will be O(NNmacro
micro ). Here will compute the time to find the

optimal state for a high dimensional model.

One drawback with PTVC is that it has no objective measurable criteria for con-
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vergence. With an exhaustive search one can know precisely that the optimum has

been found but with PTVC, one must define a time interval such that if the optimum

has not changed then one declares the algorithm converged. To assess the efficiency

we will contrast the computational time of a complete exhaustive search vs the time

for PTVC to find the optimum. This is a somewhat unfair comparison as in practice,

the PTVC will require longer for the user to know that it has converged. However, we

want to avoid distorting our results by adding an arbitrarily chosen convergence check

time to our simulation time5.

To demonstrate the computational efficiency of our PTVC method, we examine a

four state clustering of the 625 microstate, 2-D kinetic system (previously examined

in Chapter 2). We observed that running the algorithm through Matlab on an Intel

Core i3 processor, the optimal configuration is found in on average 623 seconds. This

requires computing the variational parameters for 26670 configurations. In comparison,

allowing for a one dimensional ordering of the 625 states, one would expect to search

through 40,495,000 possible configurations. A complete exhaustive search would require

far more configurations and quickly become intractable.

4.6.2 Geometric Networks

In this second results section, we apply our protocol to the general geometric networks

described previously and demonstrate that this eigenvalue based approach can prove

useful even for non-kinetic systems.

Stochastic Block Model

The first test system we consider is a randomly generated SBM where each node is

assigned to cluster and the likelihood of intracluster linkage is much higher than inter-

cluster linkage.

5The convergence rule which we chose for our code was that if the code had been running for longer
than some short prechosen time and the time since the last improvement is more than 50% of the total
simulation time then the system is said to have converged.
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Here we generate a random three cluster adjacency matrix with parameter values of

c = 4, N = 60, W = 0.7 for same cluster nodes, W = 0.005 for nodes in distinct clusters

and P (xi) = 1/3 for each cluster (equation 4.5). The generated three cluster system

and the associated four macrostate grouping found using three different variational

kinetic parameters are shown in figure 4.2.

Similarly to the observations of the kinetic systems in chapter 2, we find that

clustering in to four states can find the three clusters as well as the short-lived transition

state regions. In figure (a), the slowest timescale identifies a transition state linking

the least well connected state to the more highly connected regions. In figure (b), we

instead find a transition state region linking the next fastest dynamics. Finally in (c)

when we use all the timescales (Kemeny constant) we find that this method takes the

most well connected state and divides it. The results observed here can be thought of

as completely analogous to the 1-D smooth potential of Chapter 2.

Figure 4.2: Four state clustering of random stochastic block model network.

Santa Fe Collaboration Network

For our final example, we consider a real world network, namely the Santa Fe col-

laboration network, a popular network for testing clustering algorithm. This network

is composed of a set of 118 researchers who co-published, there are three main clus-
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ters with some interdisciplinary researchers creating links between the major research

groups.

The results of our clustering is demonstrated in figure 4.3. We have performed our

kinetic clustering to group in to two, three and four states using our various clustering

parameters (τ2,
∑3
n=2 τn). Firstly in (a) we use τ2 to group in to two clusters. We find

that the algorithm splits apart the most well connected cluster (red) from the other

two clusters. In extending to a three state clustering in (b) with τ2, the algorithm

now separates apart the two clusters which we previously aggregated in the two state

clustering.

Figure 4.3: Multistate clustering of Santa Fe research network.

Next in figures (c) and (d) we cluster in to four states with τ2 and
∑3
n=2 τn re-
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spectively. As we expect from the examples we investigated in chapter 2, since we

have identified the three metastable clusters, the four state clustering with τ2 places a

transition state between the slow states found in (a) and similarly the clustering with∑3
n=2 τn places a transition state between the two states distinguished in (b).

So using our kinetic based clustering, we can conclude that the Santa Fe collabo-

ration network is well described by three metastable states with two transition state

clusters.

4.7 Conclusions

In this chapter, we have extended our network clustering method to also work for

geometric networks and demonstrated that our new approach is effective at identifying

both metastable and transition state clusters. Additionally we have shown that using

a parallel tempering inspired method for optimizing our variational parameter, we can

make our method much more computationally efficient for large, multi-dimensional

systems.

At this point in the thesis, it is useful to summarise what has come so far. The

last three chapters (2-4) have all been built towards the goal of developing, justifying

and refining our eigenvalue based clustering with the culmination of a highly efficient

method for carrying this out. There is still significant work that can be done to fur-

ther accelerate the speed at which the algorithm performs. While the PTVC method

will find the optimal state quicker than an exhaustive search, it has a number of arbi-

trary parameters to be chosen (how many parallel simulations to run, how frequently

to perform switches etc.). Similarly, at present the initialisation for the simulations

is performed randomly while one could develop a method for making better initial

guesses/predictions for the boundary positions (for example at local free energy max-

ima). It is our hope that this method can continue to evolve in to one that will further

improve the state of the art methods in the field.
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Having drawn this line in the sand, we move away from our variational clustering

and onwards to two new and distinct pieces of work in chapters 5 and 6.
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“Prediction is very difficult, especially if it’s about the

future.”

Anonymous (Danish Proverb)

5
Estimation of Relaxation Times from

Markov Models

The goal of building an MSM is to describe a continuous dynamics by some humanly

interpretable model consisting of discrete states with transition probabilities between

them. As we’ve seen so far, this modeling will require an approximation to be made to

the dynamics which usually introduces non-Markovian effects. These non-Markovian

effects arise in essence due to the fact that, on short timescales, the system remembers

how it entered its current state due to the discretization of time and space.
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For example, in figure 5.1 we can see an example of how poor spatial-temporal

resolution can influence the Markovianity of the model. The black potential represents

the actual underlying energy profile governing the dynamics while the red dashed lines

are the boundaries defining how the microstates have been discretized. Since there is

a free energy barrier within the microstate then the model will retain memory of how

it entered the state (i.e. the blue particle entering from the left will be more likely to

exit left than to cross the barrier and exit right) if the lagtime of the model is shorter

than the time required to cross the barrier inside the microstate. In other words, the

combination of space and time discretization must be chosen such that the equilibration

time within the states is shorter than the lag at which transitions are considered.

Figure 5.1: Illustration of memory effects in Markov model construction.

Typically one uses the CK test to check that the constructed propagator is insensi-

tive to the choice of lagtime and moreover that the slowest relaxation time is insensitive

to this choice.

T (τ)nP (t) = T (nτ)P (t) (5.1)

t2(nτ) =
−nτ
λ2(nτ)

=
−nτ
nλ2(τ)

=
−τ
λ2(τ)

= t2(τ) (5.2)

There are a number of practical and interesting cases where it may be difficult to

construct a model which satisfies the CK test. For example, consider situations where

the lagtime needed to satisfy the CK condition reduces the transition sampling too

drastically to obtain meaningful statistics or even potentially when one is combining
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a large number of short simulations to construct a single model the lagtime needed

might be comparable to the simulation length1.

The objective of this chapter is to derive a simple functional dependence between

the relaxation time obtained from a constructed MSM at a particular lagtime and

the ’true’ relaxation time of the underlying continuous Markovian dynamics which are

being approximated. This functional dependence will allow us to perform a best fit to

the calculated data (relaxation time vs lagtime) and extract the relaxation time in the

limit where the lagtime tends towards to infinity.

5.1 Lagtime dependence of Relaxation Times

We begin by deriving the functional dependence of the relaxation time on the lagtime.

The only theory necessary is that of correlation functions which have been shown to

be extremely useful for several different applications so far. In this instance, we will be

using the spectral decomposition of the normalized connected correlator. As in chapter

2 (equation 2.3) we can write the correlation of two arbitrary functions f and g at a

time difference τ using the Markov matrix T .

c(f, g, τ) =
∑
i,j

g(j)f(i)[T(τ)]jip
eq
i (5.3)

Using the spectral decomposition of the propagator, one can see that the correlation

function is given by projecting the variables of interest on to the right eigenvectors with

the eigenvalues dictating the relative weighting at different times.

c(f, g, τ) =

N∑
n=1

eλnτ (g · ψRn )(f · ψRn ) (5.4)

Extracting the long time limit ((g · ψR1 )(f · ψR1 ) = 〈g〉〈f〉) amounts to removing

the first term from the sum while normalization requires division by the correlator at

1The lagtime cannot be longer than the length of the shortest simulation used to construct the
MSM.
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τ = 0.

c̄(f, g, τ) =

∑N
n=2 e

λnτ (g · ψRn )(f · ψRn )∑N
n=2(g · ψRn )(f · ψRn )

(5.5)

The logic of this derivation is as follows:

• Non-Markovian effects arise from attempting to describe a continuous Markovian

dynamics by dynamics on a finite set of discrete states.

• The local equilibrium model for coarse-graining links the correlation functions of

the full and reduced system at some finite lagtime.

• By assuming the local equilibrium model to link the full and reduced system cor-

relation functions and exploiting orthogonality of eigenvectors then the functional

dependence of coarse-grained relaxation time on lagtime can be derived.

We write the correlation function at lagtime τ of the full continuous description

from a propagator T(τ) as in equation 5.6.

c̄(f, g,T(τ)) =

∑∞
n=2 e

λnτ (g · ψRn )(f · ψRn )∑N
n=2(g · ψRn )(f · ψRn )

(5.6)

Meanwhile the correlator from a coarse-grained Markov state model TMSM con-

structed at lagtime τ is given by equation 5.7.

c̄(f, g,TMSM(τ)) =

∑∞
n=2 e

λnτ (g · ψR−MSM
n )(f · ψR−MSM

n )∑N
n=2(g · ψR−MSM

n )(f · ψR−MSM
n )

(5.7)

In the previous two equations, we have kept the general expression for a correlator

between two arbitrary functions f and g. Next, we consider the concrete example

where these are chosen to both be equal to the second left eigenvector of the discrete

model, ψL−MSM
2 . From orthogonality of left and right eigenvectors, one obtains that

the correlation function in the discrete case collapses to equation 5.8.
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c̄(ψL−MSM
2 , ψL−MSM

2 ,TMSM (τ)) =∑∞
n=2 e

λMSMn τ (ψL−MSM
2 · ψR−MSM

n )(ψL−MSM
2 · ψR−MSM

n )∑N
n=2(ψL−MSM

2 · ψR−MSM
n )(ψL−MSM

2 · ψR−MSM
n )

= eλ
MSM
2 τ (5.8)

Similarly we can examine the correlation function of P̂ (ψL−MSM
2 ), the projection

of the second MSM eigenvector back on to the full dimensional space such that the

i ∈ Ith element of the P̂ (ψL−MSM
2 ) vector is equal with the corresponding coarse-

grained element ψL−MSM
2 (I).

c̄(P̂ (ψL−MSM
2 ), P̂ (ψL−MSM

2 ),T(τ)) =∑∞
n=2 e

λnτ (P̂ (ψL−MSM
2 ) · ψRn )(P̂ (ψL−MSM

2 ) · ψRn )∑N
n=2(P̂ (ψL−MSM

2 ) · ψRn )(P̂ (ψL−MSM
2 ) · ψRn )

=

∞∑
n=2

Ane
λnτ (5.9)

Where we have defined Ai =
(P̂ (ψL−MSM2 )·ψRi )(P̂ (ψL−MSM2 )·ψRi )∑∞
n=2(P̂ (ψL−MSM2 )·ψRn )(P̂ (ψL−MSM2 )·ψRn )

. Next we will

show that the assumption of local-equilibrium, allows the correlation functions of equa-

tions 5.8 and 5.9 to be equated. The local equilibrium condition amounts to equating

correlation functions of indicator functions. Defining indicator functions fI(J) and

gI(i),

fI(J) =

 1, if J = I

0, if J 6= I
(5.10)

gI(i) =

 1, if i ∈ I

0, if i /∈ I
(5.11)

One can then express the local equilibrium condition in terms of spectral decom-
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positions with these indicator functions as in equation 5.12.

TMSM (I, J)P (J) =

N∑
n=1

eλ
MSM
n τ

(
fI(I) · ψR−MSM

n

) (
fJ(J) · ψR−MSM

n

)
=
∑
i∈I

∑
j∈J

∞∑
n=1

eλnτ
(
gI(i) · ψRn

) (
gJ(j) · ψRn

)
=
∑
i∈I

∑
j∈J

T full(i, j)P (j)

(5.12)

Using equation 5.12 and writing ψL−MSM
2 as a linear combination of weighted sum

of fI -s as basis vectors (
∑
I ψ

L−MSM
2 (I)gI(i) = P̂ (ψL−MSM

2 )), we can link equations

5.8 and 5.9.

∞∑
n=2

Ane
λnτ = eλ

MSM
2 τ (5.13)

If we assume that τ is sufficiently large that the λ2 term dominates in the summation

then we obtain equation 5.142.

eλ
MSM
2 τ =

∞∑
n=2

Ane
λnτ ≈ A2e

λ2τ (5.14)

λMSM
2 = λ2 +

ε

τ
(5.15)

Where ε = log(A2). The relaxation time scales of the system are the inverse of the

eigenvalues (µrelaxn = 1
λn

). This leads to the following equation, which describes the

relaxation time, µrelax−MSM
2 as a function of lagtime τ3.

µrelax−MSM
2 =

τ × µrelax2

τ + εµrelax2

(5.16)

2Alternately, one could argue that we would expect that A2 >> Ai>2 as P̂ (ψL−MSM
2 ) should be

close to orthogonal to ψRn>2 (and close to orthonormal to ψR2 ).
3In this text so far, we have used a subscripted τn to describe the n-th lowest relaxation time and

an unsubscripted τ to express the lagtime. To avoid any confusion in this chapter due to the frequency
of use, we have adopted µn for the relaxation time.
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Before we move on, let’s break down exactly what this equation is saying. Equation

5.16 describes that if we construct a Markov state model at lagtime τ where the under-

lying dynamics is approximately two state and has a true relaxation time of µrelax2 then

the relaxation time of the Markov model will be µrelax−MSM
2 . This is useful because

now if we are unable to reach lagtimes where our relaxation time converges to satisfy

the CK test then instead we can calculate µrelax−MSM
2 at different values of τ and

perform a least squares fit to obtain the two free parameters ε and µrelax2 .

In the remainder of this chapter, we will test this method for extracting the long

lagtime limit of relaxation times and compare it to the hidden Markov model approach.

5.2 Hidden Markov Models

For comparison, the approach derived above is contrasted with the results of using a

hidden Markov model (HMM) formalism [132, 133]. This method has been applied in

varied contexts [134–136] as it helps to describe a system where the observed distri-

bution is non-stationary in time (i.e. the observed equilibrium probabilities change

depending on the occupied hidden state).

The application of HMMs to modelling of molecular dynamics simulation data was

first outlined in a publication by Noe et al [137]. The main idea of HMMs is that there

exist some set of unobserved (hidden) states on which the dynamics of the system are

Markovian. Then from these underlying hidden states hi, at each observation time,

the system will project onto one of our observed states xj with a given probability Eij

as shown in figure 5.2.

Then given a set of observation data amongst the observed states, one can then

construct a HMM that describes the dynamics amongst the hidden states and proceed

to analyze the resulting hidden transition probability matrix as one would with a

regular MSM.

However, it has been observed that the RTs obtained by implementing the HMM
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Figure 5.2: Illustration of Hidden Markov model architecture.

method do not generally follow any variational principle and may result in longer

RTs than the true value. More importantly, while the RTs of HMMs tend to rapidly

converge (i.e. at shorter lagtimes) for sufficiently large datasets, they do not follow

the functional dependence on the lagtimes as MSMs do, as there is no corresponding

theoretical description. Put another way, our derived fitting procedure is not applicable

to HMM data as HMM do not display the same functional dependence as our fitting

equation. As such, HMMs provide the best alternative approach with which to compare

the results of fitting procedure.

5.3 Application to Test Systems

The derived equation for the slowest RT is tested on three different systems: (i) a

series of MC trajectories generated in an unbiased analytic potential, (ii) unbiased

MD simulations of pentalanine [118], and (iii) umbrella sampling simulations of an ion

passing through a pentameric Gloeobacter ligand-gated ion channel (GLIC) [138,139].

The results are compared to the RTs predicted by the HMM approach implemented

in PyEMMA [140] for the unbiased cases. A series of Markov models are constructed

at different lagtimes, and the values for the fitting parameters that minimize the error

are calculated. The fitting parameters are obtained by doing least squares fitting over
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the range of lagtimes shown in the figures.

5.3.1 Analytic Potential

Figure 5.3: Analytic potential with cluster boundaries.

The first system we tested is an analytic potential given by equation 5.17 where C0

is a number such that the minimum of the function in the domain −4π ≤ x ≤ 4π is 0

(figure 5.3).

V (x) = −2 sin[(x− π)/2] + x/8π + C0 (5.17)

The systems dynamics are constrained within this domain. We identified the el-

ements of the associated rate matrix K by discretizing the x-axis into 100 bins and

using an Arrhenius-like expression of Kij = Ae−β(V (j)−V (i))/2 to calculate the tran-

sition rates (with A = 2.5s−1), where our analytic potential is given by the function
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V (x). By using an artificial potential we can compare our calculated values to the

exact relaxation time of the system.

After generating the rate matrix for this system, we created and analysed trajec-

tories in two distinct manners, i) randomly initialised simulations and ii) downhill

trajectories initialised within the transition state.

Figure 5.4: Fit to analytic potential with half relaxation time length.

For the first approach we used a Markov chain propagation method4 to generate 100

simulations of length 40,000 (roughly twice the length of the system relaxation time).

We repeated this process 10 times to provide error bars. With this set of simulations

we clustered the trajectory frames in to a two state description5 and built both our

MSM at different lagtimes and a two state HMM. We applied our fitting method to the

calculated MSM relaxation times and extracted the long lagtime limit. The results of

4For comparison we also used the Gillespie algorithm [141] to check that both methods gave effec-
tively the same results which they did. As such we have omitted the Gillespie algorithm results.

5This clustering step is necessary to ensure that the trajectory used to generate the MSM is coarser
than the underlying Markovian model used to generate the full dimensional (100 state) trajectory. If
we just analysed the original trajectory we should just get back the exact relaxation time, independent
of lagtime.
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Figure 5.5: Fit to analytic potential with double relaxation time length.

this method are shown in figures 5.4 and 5.5 where we use simulations lengths of half

and double the relaxation time respectively.

It can be seen in both of these figures that the HMM calculated relaxation times

converge much faster than those of the MSM, however by using the relaxation time

fitting procedure one can obtain a long lagtime relaxation time which reaches as close

(or even closer) to the true value as the HMM. As expected, increasing the lengths of

the simulations used pushes the quality of the estimations towards the true value.

In the second case, we instead generate downhill trajectories from within the tran-

sition state identified using the HS variational protocol (and shown by the dotted red

lines in figure 5.3). For comparison we consider a three state MSM, and two and three

state HMMs. The results of this are presented in figure 5.6. Interestingly, we observe

that in this case the HMM rapidly converges (instantly in the three state case) but also

overestimates the true relaxation time of the system. By contrast, the fitting procedure

returns almost exactly the true value.
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Figure 5.6: Relaxation time plot for analytic downhill trajectories.

5.3.2 Pentalanine MD Simulation

In this section, we apply our approach to an MD simulation of pentalanine (Ala5)6.

Pentalanine is one of the most popular test systems for MSMs within the MD commu-

nity. This is in part due to it being small enough to be simulated exhaustively while also

exhibiting interesting dynamical behaviour in its helix-coil transition. The molecule

is typically described in terms of its ten backbone dihedral angles (Ramachandran

angles [142]).

The simulation trajectories analysed consist of four 250ns long independent unbi-

ased MD simulations at different initial conditions with frames saved every 1ps. The

errors on our calculations were obtained by performing the analysis for each of the four

simulations individually. For conciseness, we present the lagtime fitting figure for ψ3

in figure and summarise the results for the other angles in table 5.1.

6This simulation data was provided by our collaborators, further details can be found in the asso-
ciated publication [118]
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Figure 5.7: ψ3 relaxation time plot

After analysing each angle we found that the relaxation times had not converged

even at the longest accessible lagtimes. By performing our best fit we find that the

long lagtime limit finds a relaxation time that is significantly closer to the 6–7ns value

obtained by an analysis that simultaneously considers all angles and uses a transition-

based state assignment [118].

Interestingly the HMM approach finds values which match closely to the 6-7ns value

even at the smallest lagtimes considered. However it appears that the HMM description

breaks down at shorter lagtimes than the MSM. Examining the results for all the angles

in table 5.1 we see that all ten of the angles exhibit similar limiting relaxation times

but there are two distinct groupings of ε values for the ψ and φ angles.

From examining our derived equation, it is possible to show that the ε parameter

corresponds to the initial slope of the data (i.e. the derivative of relaxation time with

respect to lagtime, evaluated at a lagtime of zero). The epsilon parameter then has the

interpretation of the speed with which the curve converges (with smaller values indicat-
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ing quicker convergence). This provides a rough measure for determining the quality of

a reaction coordinate because for a perfect reaction coordinate one would expect that

ε would vanish to zero and the coordinate would exhibit no lagtime dependence.

Coordinate lagtime=1 lagtime=1000 ε Limiting RT

1 φ1 6.5 516.1 1.81 6976.3
2 ψ1 952.2 2700.7 0.23 4711.3
3 φ2 25.5 567.7 1.75 6042.0
4 ψ2 687.2 3353.6 0.17 6571.1
5 φ3 33.9 515.8 2.01 6875.1
6 ψ3 653.2 2813.0 0.22 5101.8
7 φ4 65.8 424.7 2.47 9421.1
8 ψ4 490.0 1929.3 0.47 5325.4
9 φ5 27.1 302.9 3.43 11303.5

10 ψ5 189.5 740.5 1.06 5594.0

Table 5.1: Relaxation times (in ps) and ε parameters for pentalanine angles.

Examining the data in Table 5.1, we can see that φ5 has both the largest ε value and

the most distinct value for its limiting relaxation time. The slow convergence indicated

by the large ε value might help to explain why our value is so different.

5.3.3 Biased GLIC MD Simulation

The final example we consider is a biased simulation of an ion passing through a GLIC

channel (figure 5.8). This is a particularly interesting case for us as it is the situation

where we believe our derived algorithm will potentially be of greatest value. In this

case, we cannot reach lagtimes for our CK plot to converge and also we cannot construct

an HMM since the trajectory is biased.

The trajectory data was generated by a series of umbrella sampling Hamiltonian

replica exchange simulations [143–145] where the exchange steps were attempted every

200fs 7. Since the parallel trajectories are exchanged every 200fs, this is the longest

lagtime at which one can construct an MSM. However, constructing at the length of

7These simulations were performed by collaborators and further simulation details can be found in
the associated publications [138,139]
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Figure 5.8: GLIC Ion channel

the individual simulations will hugely reduce the number of transitions and comprimise

the statistical sampling. As such we constructed our MSM at lagtimes ranging from 1

to 100fs.

By constructing the MSM at the longest accessible lagtime of 100fs, we found the

relaxation time to be 4.08× 108fs. This is more than an order of magnitude less that

the experimentally observed value of 6.25 × 109fs. But if we use our derived fitting

procedure then we can find a value of 4.09 × 109fs, which is much closer to the true

value (and is likely within the margins of error for such techniques).

5.4 Conclusions

In this chapter we have derived a method for improving the estimation of relaxation

times in the long lagtime limit and compared its performance to the HMM method.

Our method proved effective but it comes with a few caveats which we consider here.

Firstly, there is significant ambiguity regarding the choice of lagtimes to fit to in

terms of both range and density. We typically found that it was best to avoid fitting to
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Figure 5.9: Relaxation time plot for replica exchange ion channel simulation.

small lagtimes where the two state description was likely invalid and also avoid large

lagtimes where the noise due to reduced sampling was greater.

Regarding the number of points to use for fitting, we found that using a large

number of points (typically above 100) caused the relaxation time to fluctuate due

to the fitting data not exactly matching the derived functional dependency. To this

end, we generally searched for a combination of range and density such that our fitting

parameters were not sensitive to variations in these choices.

By examining the analytic potential and pentalanine examples we can see that the

fitting procedure performs well but not significantly better than the HMM approach.

However for the case where we have biased simulation data and cannot reach useful

timescales due to replica exchange then our fitting procedure offers a useful tool for

obtaining a more accurate comparison for validation to experiment. Though this pro-

cedure requires some decision making on the part of the user, it has a clear domain of

problems where it proves useful for making quantitative predictions from limited data

sets.
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6
Kinetic Analysis of Membranes with Markov

Modelling

6.1 Introduction

In this penultimate chapter, we examine a further application of the Markov modelling

theory described previously. In particular, we focus on the use of MSM theory to im-

prove existing methods for calculating the permeability of cell membranes to different

drug molecules. The primary benefit of MD simulation is the ability to give atomistic
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level insight in to kinetic processes. The experimentally challenging procedure of de-

termining cell membrane crossing rates is then well suited to MD study. Calculating

the membrane permeability is of particular interest to pharmaceutical companies who

are keen to quickly and accurately quantify the properties of potential drug candidates.

In an earlier study by Dickson and others at Novartis [1] , it was shown that long

MD simulations can produce accurate estimates for the membrane permeabilities which

match well with experimental values [146]. However these results required extensive

computational resources and a complex analytic procedure. In this chapter we show

that using biased simulations to construct a MSM, one can obtain equivalently accurate

membrane permeabilities by a much simpler methodology1.

In particular, we analyse the same seven structurally distinct drugs from the original

studies by Eyer and Dickson [1,146] and show how to conveniently calculate the kinetic

rates to transition in to, out of and across the cell membrane. As shown in figure 6.1

(reproduced from original computational publication by Dickson et al.) we consider

a segment of a cell membrane with water on both sides. We demonstrate that drug

permeabilities can be accurately and conveniently computed from MSM relaxation

times. Furthermore, we show that generally a variety of kinetic properties linked to the

crossing of the membrane (free energy barrier, crossing rates) are accurate indicators

for the relative drug permeability.

6.2 Methodology

6.2.1 Existing Approach

The methodology implemented by Dickson et al. [1] used the following steps.

• Set up and run an MD simulation containing a drug molecule and a portion of a

cell membrane (figure 6.1).

1For clarity of contribution, the biased simulations were performed by collaborators, the author
was responsible for the processing and unbiasing of the data, construction of the Markov model and
the development of some new simple equations for computing membrane permeability from an MSM.
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Figure 6.1: Image of drug-membrane system [1]

• Construct an MSM from the data, using the distance from the center of the

membrane as a reaction coordinate.

• Use PCCA+ to cluster in to four regions (outer-water, outer-membrane, inner-

membrane, inner-water).

• Calculate the new rate constants between the four clustered regions.

• Perform a Monte Carlo simulation of the constructed rates and fit the decay of an

initial probability vector (all probability in state 1) to a biexponential function

to get the equilibration rates.

• Compute the membrane permeability using the fastest equilibration rate via equa-

tion 6.1.

The equation used to calculate the permeability is given below in equation 6.1 where
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P is the permeability, ka is the rate constant of the fastest phase and r is the radius

of the experimental cell (assuming a spherical cell) [1].

P =
kar

3
(6.1)

This approach uses a complicated approach to achieve a dynamic quantity which

describes the time with which the drug permeates the cell membrane. In our alternate

approach we provide a computationally and conceptually simpler method for obtaining

a quantity which can be used to replace ka.

6.2.2 Markov Model Inspired Approaches

In our alternative approach [147], we have two main points to make, firstly that biased

simulations can greatly reduce the amount of sampling required for accurate kinetics

and secondly that there are a number of different kinetic parameters obtainable directly

from the MSM which serve as good proxies for the membrane crossing rate ka used in

the existing studies.

• Perform an initial pulling MD simulation where a force is applied to the drug

molecule to drag it cross the drug membrane.

• Use the frames of this initial trajectory to initialise and run a series of umbrella

sampling potentials at different positions along the reaction coordinate.

• Using the dynamic histogram analysis method (DHAM) [148], construct a MSM

from the biased simulation data.

• Use the slowest relaxation time τ2 directly from the MSM to obtain the perme-

ability P by taking τ2 ≈ 1/ka.
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6.3 Theory

Most of the theory necessary for this chapter has been covered in previous chapters

but we do need to introduce the topics of biased simulation and how to unbias them.

6.3.1 Biased Simulation

The details of MD simulation were laid out in section 1.3 and drew attention to the

fact that a simulation generates dynamics by assuming some potential energy model for

the interactions between the atoms of the system. One hopes that using such a model

will generate accurate dynamics however for many realistic systems the ’interesting’

processes happen on the order of milliseconds (or even seconds) whilst the numerical

integrator (central differences etc.) requires a timestep δt on the order of femtoseconds

to be accurate.

The magnitude of these time differences means that it often computationally un-

feasible to simulate systems for long enough to obtain sufficient sampling of the rare

events. To circumvent this timescale issue, a variety of enhanced sampling techniques

have been developed [149–153]. Most of these techniques work by applying an ad-

ditional term to the potential energy equation used to generate the dynamics, these

methods either add a term to move the system away from regions of configuration

space that it has already sampled or add a term to constrain the system and ensure a

particular region of space is better sampled.

The biasing method employed here will be umbrella sampling (US) [154, 155]. US

requires a reaction coordinate of interest to be chosen. One then generates a series

of configurations along the reaction coordinate from which to initialise simulations.

Next a series of simulations are started where the potential energy function is given

an additional harmonic constraint Ui as in equation 6.2 where ki is the restraining

force and xi is the value of the reaction coordinate which the umbrella simulation is
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constrained to be remain close to.

Ui(x) = ki(x− xi)2 (6.2)

By spacing these simulations appropriately, one obtains an overlapping series of

simulations such that the reaction coordinate is (approximately) uniformly sampled.

From this sampling of the reaction coordinate one then needs to retrospectively ac-

count for this biasing when constructing the Markov model for the underlying system.

The most well known approaches for this are the weighted histogram analysis method

(WHAM) and the dynamic histogram analysis method (DHAM) which we introduce

now.

6.3.2 Unbiasing Methods

WHAM is a method for recovering free energies from umbrella sampling simulations

[156–158] and has allowed umbrella sampling to grow in to one of the most widely

used enhanced sampling methods [159–161]. The logic follows that the probability of

observing a particular state during a simulation will be perturbed by a predictable

amount during an US simulation since we know the term which has been added to the

potential energy2.

By examining the number of observations of each state in each simulation, one can

use knowledge of the biasing term to obtain the unbiased probabilities via the iterative

equations 6.3 and 6.4.

pj =

∑Msim

k=1 n
(k)
j∑Msim

k=1 N (k)f (k)e−u
(k)
j /kBT

(6.3)

f (k) =
1∑Nbin

l=1 e−u
(k)
l /kBT pl

(6.4)

2WHAM relies on the assumption that the observed states of the system have all been sampled
with equilibrium probability.
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While WHAM has been extremely popular for reproducing free energy profiles,

it has the drawback that it does not make use of the kinetic information from the

simulation.

In this sense, one could take the observations of an MD simulation trajectory, shuffle

them (like a deck of cards) and WHAM will reproduce the same free energy profile as

it cares only about the relative frequency of observations and not the ordering in time.

To address this issue the transition reweighted analysis method (TRAM) [162] was

developed to use the transition count information to improve the free energy estimation.

TRAM however only returned free energies and not any kinetic information. DHAM

[148] was developed as an alternative method to incorporate the kinetic information

and produce not a free energy profile but a full MSM from the US data. By using a

maximum likelihood approach one can derive the most likely MSM given the biased

observations. This results in equation 6.5 where C
(k)
ji is the number of transition counts

between states i and j in simulation k, n
(k)
i is the total number of counts in state i in

simulation k and V kj is the potential applied to state j in simulation k.

Mji =

∑Msim

k=1 C
(k)
ji∑Msim

k=1 n
(k)
i e−(V

k
j −V ki )/kBT

(6.5)

Further refinements of these methods have been developed, namely dTRAM [163]

which extends TRAM to estimate a MSM and DHAMed [164] which extends the DHAM

method to enforce detailed balance. We will use DHAM for our analysis as it allows

us to construct an MSM automatically from the umbrella sampling data from which

we can extract interesting kinetic information (relaxation time and mean first passage

times).
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6.4 MSM Analysis of Membrane Simulations

In this section we present the following results of applying the aforementioned procedure

to the umbrella sampling simulations.

• We perform the CK test to obtain the lagtime at which to construct our MSM

and also use our limiting method (from chapter 5) to extract the long lagtime

relaxation time.

• We compare the free energy profiles obtained from the umbrella sampling to those

originally obtained by Dickson et al. with unbiased simulation.

• We compute the permeability via a number of kinetic parameters and compare

and contrast the effectiveness with the original method.

During the analysis, it was observed that the profiles obtained were slightly asym-

metric. This arose due to the umbrella window at the very peak of the free energy

barrier (center of the membrane) sampling one side of the barrier more than the other.

To compensate for this we assumed that since the cell membrane was prepared to

be symmetric that we can reflect the observations in the central umbrella window to

achieve symmetry at the barrier peak. This highlights one of the issues with traditional

US, it often operates by using equidistant umbrella positions and equal constraining

forces. In reality one likely requires the umbrella parameters to vary depending on the

local curvature of the free energy potential.

6.4.1 Chapman-Kolmogorow Test

The relaxation time, τ2, for each drug molecule was determined by constructing MSMs

at a range of lagtimes up to 300ps with 1000 bins, as shown in Figure 6.2. Using our

method for calculating the limiting relaxation time of an MSM, we determined the

long lagtime limit of the relaxation time for each drug, as shown by the dashed lines in

Figure Y. The relaxation times can be seen to level off in the region of lagtimes greater
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than 100 ps. In the analysis that follows, we chose to use a lagtime of 200 ps for MSM

construction, as it is sufficiently large for τ2 to be insensitive to the precise choice of

the lagtime. Following this initial choice of parameters, seven Markov models (one for

each drug molecule) were constructed with 1000 bins and a lagtime of 200ps (100,000

simulation steps).

Figure 6.2: Fitted relaxation times for drug molecules

6.4.2 Free Energy Profiles

Following MSM construction (using DHAM) we can compute the free energy profiles

for each drug and draw comparison with the profiles obtained by Dickson et al. in the

unbiased simulations, using WHAM (figures 6.3 and 6.4).

Error bars were determined by dividing the data into two equal sections, deter-

mining the profiles independently, and calculating the variance. All of our free energy

profiles show the same trend as the one calculated by Dickson et al. (dotted lines) for

the combined unbiased and biased MD data, and indeed, all of the WHAM predictions

are within the error of the DHAM free energies.
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Figure 6.3: DHAM free energies

We found that in some of the simulation data, the central US window at z = 0Å is

not sampled uniformly and so the resulting potentials become highly asymmetric. To

address this, we reflect the observed trajectory in the central window to symmetrize.

This is reasonable if we assume that the cell membrane should behave symmetrically.

While the PMF changes depending on whether the US window at z = 0Å was

reflected or not, the permeability data are essentially unchanged. The asymmetry

observed in the not fully reflected PMF profiles also suggests that greater sampling of

this region may be necessary to accurately estimate crossing times (or that the strength

of the umbrella potential might be varied to be more restrictive).

The free energy profiles obtained from the umbrella sampling data accurately repro-

duce the results of Dickson et al. while using a much smaller amount of computational

resources. We used 3.2µs of simulation for each drug molecule while the work by

Dickson et al. used 12.5µs. This represents a reduction of approximately 75% in the

computational intensity of the study.
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Figure 6.4: DHAM free energies

6.5 Permeability Ordering

The ultimate goal of this project was to show that we could compute the relative

permeability quickly and conveniently from a biased simulation. We’ve shown already

that biased simulations can be used to get accurate free energy profiles. We now want

to show how a variety of kinetic properties can be used to order drug compounds by

relative permeability.

As described previously, to obtain the relative permeability, one must compute the

timescale of the process corresponding to the crossing of the free energy barrier at

the center of the membrane among the different drug molecules. Here, we considered

several ways to estimate the relative ordering directly using the kinetics from a MSM

(Table 6.1).

We will compare seven log P quantities in total, one experimental value and three

values calculated each for the unbiased and biased simulation.

The three kinetic values we use are i) the slowest relaxation time of the full dimen-
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sional model logP (τ2) ii) using PCCA+ to recover the four regions used by Dickson

et al. and calculating the MFPT between the regions on either side of the barrier

logP (kf ) and iii) using knowledge of the crossing rate and barrier height to estimate

the Arrhenius rate constant logP (A). These approaches are simple to implement com-

pared with simulating a kinetic system from the calculated rates and performing a

bi-exponential fit to the resultant time-dependent probabilities.

Computing these quantities, we obtain a distinct range of values. The original logP

values obtained by Dickson et al. most closely resemble the experimentally determined

values. There are a number of caveats to this though. While the values from our

proposed MSM based method less closely resemble the experimental, they provide

higher R2 values. The R2 values describe the extent to which two sets of numbers can

be mapped to each other via a linear transformation.

In many practical applications, it is this high R2 that we are more interested in.

In other words, we want to predict not necessarily the absolute permeability but the

relative magnitude to a high degree of certainty. Additionally there is the factor that

the MSMs for the unbiased case were constructed at a relatively short lagtime whereas

the relaxation time used for the biased logP (τ2) was the value extracted from the long

lagtime limit fitting procedure. Varying the lagtime will fluctuate the absolute value

of the relaxation time but not the relative ordering of the drugs.

Unbiased Biased
Drug Name logPexp logP logP (kf ) logPA logP (τ2) logP (kf ) logPA

Domperidone -2.6 −2.65± 0.11 -2.93 0.663 −4.04± 0.95 -4.15 0.532
Labetalol -2.1 −1.2± 0.36 -1.36 2.051 −2.46± 0.82 -2.57 2.107

Loperamide -0.42 0.11± 0.09 0.35 4.105 −1.31± 0.17 -1.38 3.43
Verapamil 0.01 0.09± 0.05 1.20 5.246 0.05± 0.01 -0.58 5.05
Propanalol 0.19 0.51± 0.06 1.39 4.814 −0.54± 0.88 0.04 4.52

Chlopromazine 0.59 0.85± 0.13 1.76 5.531 0.46± 0.07 0.42 5.52
Desipramine 0.65 0.7± 0.01 1.56 5.402 0.24± 0.01 0.21 5.42

R2 1 0.924 0.965 0.984 0.928 0.966 0.943

Table 6.1: Comparison of Log P values obtained by different methods.
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Comparing directly the unbiased logP and the biased logP (τ2) in figure 6.5, we can

observe that the two sets of numbers correlate well with the experimental value and

provide strong measures for ordering drug molecules according to permeability.
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Figure 6.5: Comparison to experimental Log P values

6.6 Conclusions

In this chapter, we applied our lagtime fitting procedure to a membrane crossing sys-

tem, derived a simpler protocol for estimating permeabilities and more generally by

examining the kinetic quantities obtained from the full MSM, we managed to provide

highly accurate orderings of the seven drug molecules according to their membrane

permeability. In general, we found that using any sensible kinetic property provided a

good measure for this ordering.

Given the accuracy of the newly proposed protocol, this means that the challenge

of efficiently calculating membrane permeabilities from molecular simulation becomes

a question of obtaining accurate MSMs. This allows for the use of US to accelerate

the sampling. However there is the potential for even greater acceleration as the data

studied here was generated by a series of uniformly spaced, equally shaped umbrella

potentials. It is likely that an adaptive US procedure could obtain accurate values even
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quicker.
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“Well, I’ve narrowed it down to two possibilities: yes

and no.”

Chidi Anagonye, The Good Place

“Everything I’ve ever let go of has claw marks on it.”

David Foster Wallace, Infinite Jest

7
Conclusions and Outlook

The goal with the research undertaken was to examine the state of the art techniques

being used for Markov modeling throughout science, with a particular focus on the

applications to biophysical molecular dynamics. The ultimate prize being a protocol

which identifies the key regions clusters of interest in the model while removing the

need for arbitrary and uncertain decision making on the part of the user. To this end

we conclude this thesis with some comments and opinions on the latest progress in the

field and what the future may hold for Markov state modeling and the wider molecular

dynamics community.
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7.1 Automated Construction of Markov state mod-

els

The question driving much MSM research over the past few years has been ’how can we

remove the user, who may well not be an MSM expert, from needing to make decisions

in the construction of the MSM?’. As a means to achieving this goal, many research

groups have leveraged machine learning techniques to automate the key problematic

procedures such as feature selection [73,165–169] or microstate clustering [96,170] and

create single step end-to-end pipelines [171,172].

It is this authors opinion that the concentrated goal of removing the user from the

construction process misses the point to some degree. While automating certain tricky

decisions for non-experts in such a way that minimizes errors is clearly desirable, this

should never come at the expense of the usefulness of the final result. Interpreting

the result of any mathematical pipeline (whether the pipeline is automated or not)

requires the user to have at the forefront of their mind the precise question the pipeline

is designed to answer, as well as any assumptions which are built in its approach.

It is upon this philosophy which we have tried to build the protocols outlined in

this thesis. With biophysical simulations, the behaviour we are interested in is always

what is the most ’interesting’. This may be the slow dynamics, it may not. More

useful than a fully automatic pipeline is a flexible tool which i) makes very clear the

principles upon which it is built (and the assumptions it requires) and ii) allows the

user the opportunity to avoid non-intuitive parameter selection in favour of instead

applying the intuition and expertise they do have for the wider problem at hand.

Therefore the methods developed within this thesis have aimed to be maximally

clear and frank about any assumptions made and about the remaining parameter

choices. In particular, in chapters 2-4 of this thesis we lay out our variational coarse-

graining protocol which variationally searches for the clustering of states which max-

imises the relaxation timescales obtained from Hummer-Szabo coarse-graining. This
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protocol relies on the assumptions that i) Hummer-Szabo is an appropriate coarse-

graining method for the system at hand and ii) that timescale optimisation will dis-

tinguish the ’interesting’ regions of the potential energy landscape. We have sought to

provide strong reasoning why we would expect these assumptions to be valid in many

systems but they still remain assumptions nonetheless.

In our variational method, we still retain a user input regarding which sum of

timescales to use but have also attempted to both make it as straightforward as possible

for an experienced scientist to incorporate their own knowledge and experience (by

choosing the timescale describing the behaviour of interest) and at the same time

recommend an automatic protocol for the more general situation.

7.2 The Outlook for Markov Models

We conclude by taking a step back from the research presented in this thesis and

examining the current state of the wider field in general as well as speculating on the

future of Markov state models as an analysis tool.

The final aim is to produce a toolkit and accompanying mathematical framework

such that the end users, MD simulation experts, can provide actionable insight in to

their systems and develop new pharmaceutical drugs and materials. To this end there

are three main question marks over the use of MSMs which future research will need

to address.

Firstly, so much of the current research in the field (our own included) has relied

upon the assumption that the slowest dynamics are the most interesting to the user. It

is easy to construct simple examples of systems where this assumption is violated and

in fact the fast dynamics may be critical. Consider the case of a small drug molecule

interacting with a large protein. Access to the binding pocket of the protein may be

restricted by whether some fast moving side-chain is blocking the pocket or not. Now

while the binding to the pocket is the slow process, it is actually highly influenced by
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a fast dynamics. The question remains whether one can automatically build an MSM

describing the interesting dynamics of a system or whether this will always require ad-

hoc user knowledge. Or perhaps more importantly, can one create a framework which

makes it easy for a non-expert user to integrate their prior domain-specific knowledge

in a way which will return useful insights?

Secondly, MSMs have long be a source of optimism for developing enhanced sam-

pling methods which are not only effective at accelerating sampling but are quanti-

tatively optimizable according to some reasonable metric. A huge range of sampling

techniques have been developed over the last twenty years, including some MSM in-

spired methods. Qualitative reasoning has usually been employed to argue for one

method over another by claiming that for some example system the proposed method

can identify the conformations of interest faster than some benchmark method. While

this is clearly of value in helping practitioners understand which methods may be ad-

vantageous for their particular system, it doesn’t allow for any clear, direct comparison

between different methods.

This shortcoming arises in part due to the twin objectives of enhanced sampling

techniques, the identification of new interesting states and the accelerated sampling

of the observed configurations. In some systems, one is most interested in observing

new states which were previously unknown (such as metastable protein misfoldings)

while in other cases, one is more interested in quickly obtaining an accurate equilibrium

sampling of known states (such as in estimating free energy barriers where accurate

estimation requires extensive sampling of the lowest probability states). This trade-off

between crossing barriers and obtaining accurate free energies is largely what prevents

the emergence of a ’best’ enhanced sampling algorithm as it does not allow for a single

optimisable criterion by which to measure an algorithms performance.

Lastly, the primary advantage of the MSM framework is that it allows independent

simulations of the same system to be combined in a statistically significant manner to

construct a single model. However there are two natural extensions of this which are
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yet to be produced, i) can we combine independent simulations of subdivisions of a

system in to a single kinetic model or ii) if we have obtained an MSM for a particular

system can we extract information about mutated versions of that system (e.g. the

same protein with a single residue altered).

The questions raised above remain unanswered and of huge practical application.

One hopes that progress can made on these in the years to come. Although variational

optimization and automation has shown promise in recent years, progress on these par-

ticular frontiers may require a fundamental shift in approach and mind-set by replacing

the goal of complete automation with the development of flexible frameworks which

allow for the straight-forward combination of domain specific knowledge/objectives.

In this authors opinion, this should be achievable through the mindful application of

machine learning techniques to Markovian models.

With all these research possibilities, it is an ever exciting time to be working in

kinetic research. The scope of potential systems to study is growing rapidly, as are

the resources with which to study them and the corresponding theoretical frameworks

need to adapt and evolve to facilitate this growth. The diversity of fields of research

from which inspiration has been taken is far reaching, making this one of the most

truly cross-disciplinary corners of science.
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[106] J.G. Kemény and J.L. Snell. Finite markov chains. University series in under-

graduate mathematics. Van Nostrand, 1960.

[107] Adam Kells, Edina Rosta, and Alessia Annibale. Correlation functions, mean

first passage times and the kemeny constant, 2019.

[108] Peter G Doyle. The kemeny constant of a markov chain. arXiv preprint

arXiv:0909.2636, 2009.

[109] Jeffrey J Hunter. The role of kemeny’s constant in properties of markov chains.

Communications in Statistics-Theory and Methods, 43(7):1309–1321, 2014.

[110] Dario Bini, Jeffrey J Hunter, Guy Latouche, Beatrice Meini, and Peter Taylor.

Why is kemeny’s constant a constant? Journal of Applied Probability, 55(4):1025–

1036, 2018.

[111] Karl Gustafson and Jeffrey J Hunter. Why the kemeny time is a constant. Special

Matrices, 4(1).

[112] Jiri Brummer, Elenna Dugundji, and Daphne van Leeuwen. Optimizing commu-

nity detection using the kemeny constant. 2018.

[113] Angelo Perico, Roberto Pratolongo, Karl F Freed, Richard W Pastor, and At-

tila Szabo. Positional time correlation function for one-dimensional systems with

barrier crossing: Memory function corrections to the optimized rouse–zimm ap-

proximation. The Journal of Chemical Physics, 98(1):564–573, 1993.

[114] Gerhard Hummer. Position-dependent diffusion coefficients and free energies from

bayesian analysis of equilibrium and replica molecular dynamics simulations. New

Journal of Physics, 7(1):34, 2005.

157



[115] Robert B Best and Gerhard Hummer. Coordinate-dependent diffusion in protein

folding. Proceedings of the National Academy of Sciences, 107(3):1088–1093,

2010.

[116] D Holcman and Z Schuss. 100 years after smoluchowski: stochastic processes in

cell biology. Journal of Physics A: Mathematical and Theoretical, 50(9):093002,

jan 2017.

[117] Peter Hänggi, Peter Talkner, and Michal Borkovec. Reaction-rate theory: fifty

years after kramers. Reviews of modern physics, 62(2):251, 1990.

[118] Nicolae-Viorel Buchete and Gerhard Hummer. Coarse master equations for pep-

tide folding dynamics. The Journal of Physical Chemistry B, 112(19):6057–6069,

2008.

[119] Attila Szabo, Klaus Schulten, and Zan Schulten. First passage time approach to

diffusion controlled reactions. The Journal of Chemical Physics, 72(8):4350–4357,

1980.

[120] M.H. Protter and C.B.J. Morrey. Intermediate Calculus. Undergraduate Texts

in Mathematics. Springer New York, 2012.

[121] Christian H Jensen, Dmitry Nerukh, and Robert C Glen. Calculating mean first

passage times from markov models of proteins. In AIP Conference Proceedings,

volume 940, pages 150–157. AIP, 2007.

[122] Carl D Meyer Jr. An alternative expression for the mean first passage matrix.

Linear algebra and its applications, 22:41–47, 1978.

[123] Sunhwan Jo, Taehoon Kim, Vidyashankara G Iyer, and Wonpil Im. Charmm-

gui: a web-based graphical user interface for charmm. Journal of computational

chemistry, 29(11):1859–1865, 2008.

158



[124] James C Phillips, Rosemary Braun, Wei Wang, James Gumbart, Emad Tajkhor-

shid, Elizabeth Villa, Christophe Chipot, Robert D Skeel, Laxmikant Kale, and

Klaus Schulten. Scalable molecular dynamics with namd. Journal of computa-

tional chemistry, 26(16):1781–1802, 2005.

[125] David J Earl and Michael W Deem. Parallel tempering: Theory, applications,

and new perspectives. Physical Chemistry Chemical Physics, 7(23):3910–3916,

2005.

[126] Mark EJ Newman. Modularity and community structure in networks. Proceedings

of the national academy of sciences, 103(23):8577–8582, 2006.

[127] Santo Fortunato. Community detection in graphs. Physics reports, 486(3-5):75–

174, 2010.

[128] David Gfeller and Paolo De Los Rios. Spectral coarse graining of complex net-

works. Physical review letters, 99(3):038701, 2007.

[129] Yunpeng Zhao, Elizaveta Levina, Ji Zhu, et al. Consistency of community detec-

tion in networks under degree-corrected stochastic block models. The Annals of

Statistics, 40(4):2266–2292, 2012.

[130] Jing Lei, Alessandro Rinaldo, et al. Consistency of spectral clustering in stochas-

tic block models. The Annals of Statistics, 43(1):215–237, 2015.

[131] Santo Fortunato and Darko Hric. Community detection in networks: A user

guide. Physics reports, 659:1–44, 2016.

[132] Leonard E Baum and Ted Petrie. Statistical inference for probabilistic functions

of finite state markov chains. The annals of mathematical statistics, 37(6):1554–

1563, 1966.

[133] Lawrence R Rabiner. A tutorial on hidden markov models and selected applica-

tions in speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

159



[134] Anders Krogh, Michael Brown, I Saira Mian, Kimmen Sjölander, and David
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